address.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /* Copyright (c) 2003-2004, Roger Dingledine
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2008, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. /* $Id$ */
  6. const char address_c_id[] =
  7. "$Id$";
  8. /**
  9. * \file address.c
  10. * \brief Functions to use and manipulate the tor_addr_t structure.
  11. **/
  12. #include "orconfig.h"
  13. #include "compat.h"
  14. #include "util.h"
  15. #include "address.h"
  16. #include "log.h"
  17. #ifdef MS_WINDOWS
  18. #include <process.h>
  19. #include <windows.h>
  20. #endif
  21. #ifdef HAVE_SYS_TIME_H
  22. #include <sys/time.h>
  23. #endif
  24. #ifdef HAVE_UNISTD_H
  25. #include <unistd.h>
  26. #endif
  27. #ifdef HAVE_ERRNO_H
  28. #include <errno.h>
  29. #endif
  30. #ifdef HAVE_NETINET_IN_H
  31. #include <netinet/in.h>
  32. #endif
  33. #ifdef HAVE_ARPA_INET_H
  34. #include <arpa/inet.h>
  35. #endif
  36. #ifdef HAVE_SYS_SOCKET_H
  37. #include <sys/socket.h>
  38. #endif
  39. #ifdef HAVE_NETDB_H
  40. #include <netdb.h>
  41. #endif
  42. #ifdef HAVE_SYS_PARAM_H
  43. #include <sys/param.h> /* FreeBSD needs this to know what version it is */
  44. #endif
  45. #include <stdarg.h>
  46. #include <stdio.h>
  47. #include <stdlib.h>
  48. #include <string.h>
  49. #include <assert.h>
  50. /** Convert the tor_addr_t in <b>a</b>, with port in <b>port</b>, into a
  51. * socklen object in *<b>sa_out</b> of object size <b>len</b>. If not enough
  52. * room is free, or on error, return -1. Else return the length of the
  53. * sockaddr. */
  54. socklen_t
  55. tor_addr_to_sockaddr(const tor_addr_t *a,
  56. uint16_t port,
  57. struct sockaddr *sa_out,
  58. socklen_t len)
  59. {
  60. if (a->family == AF_INET) {
  61. struct sockaddr_in *sin;
  62. if (len < (int)sizeof(struct sockaddr_in))
  63. return -1;
  64. sin = (struct sockaddr_in *)sa_out;
  65. sin->sin_family = AF_INET;
  66. sin->sin_port = htons(port);
  67. sin->sin_addr.s_addr = tor_addr_to_ipv4n(a);
  68. return sizeof(struct sockaddr_in);
  69. } else if (a->family == AF_INET6) {
  70. struct sockaddr_in6 *sin6;
  71. if (len < (int)sizeof(struct sockaddr_in6))
  72. return -1;
  73. sin6 = (struct sockaddr_in6 *)sa_out;
  74. memset(sin6, 0, sizeof(struct sockaddr_in6));
  75. sin6->sin6_family = AF_INET6;
  76. sin6->sin6_port = htons(port);
  77. memcpy(&sin6->sin6_addr, &a->addr.in6_addr, sizeof(struct in6_addr));
  78. return sizeof(struct sockaddr_in6);
  79. } else {
  80. return -1;
  81. }
  82. }
  83. /** Set the tor_addr_t in <b>a</b> to contain the socket address contained in
  84. * <b>sa</b>. */
  85. int
  86. tor_addr_from_sockaddr(tor_addr_t *a, const struct sockaddr *sa,
  87. uint16_t *port_out)
  88. {
  89. tor_assert(a);
  90. tor_assert(sa);
  91. memset(a, 0, sizeof(tor_addr_t));
  92. if (sa->sa_family == AF_INET) {
  93. struct sockaddr_in *sin = (struct sockaddr_in *) sa;
  94. a->family = AF_INET;
  95. a->addr.in_addr.s_addr = sin->sin_addr.s_addr;
  96. if (port_out)
  97. *port_out = ntohs(sin->sin_port);
  98. } else if (sa->sa_family == AF_INET6) {
  99. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa;
  100. a->family = AF_INET6;
  101. memcpy(&a->addr.in6_addr, &sin6->sin6_addr, sizeof(struct in6_addr));
  102. if (port_out)
  103. *port_out = ntohs(sin6->sin6_port);
  104. } else {
  105. a->family = AF_UNSPEC;
  106. return -1;
  107. }
  108. return 0;
  109. }
  110. /** Set address <b>a</b> to the unspecified address. This address belongs to
  111. * no family. */
  112. void
  113. tor_addr_make_unspec(tor_addr_t *a)
  114. {
  115. memset(a, 0, sizeof(*a));
  116. a->family = AF_UNSPEC;
  117. }
  118. /** Similar behavior to Unix gethostbyname: resolve <b>name</b>, and set
  119. * *<b>addr</b> to the proper IP address and family. The <b>family</b>
  120. * argument (which must be AF_INET, AF_INET6, or AF_UNSPEC) declares a
  121. * <i>preferred</i> family, though another one may be returned if only one
  122. * family is implemented for this address.
  123. *
  124. * Return 0 on success, -1 on failure; 1 on transient failure.
  125. */
  126. int
  127. tor_addr_lookup(const char *name, uint16_t family, tor_addr_t *addr)
  128. {
  129. /* Perhaps eventually this should be replaced by a tor_getaddrinfo or
  130. * something.
  131. */
  132. struct in_addr iaddr;
  133. struct in6_addr iaddr6;
  134. tor_assert(name);
  135. tor_assert(addr);
  136. tor_assert(family == AF_INET || family == AF_INET6 || family == AF_UNSPEC);
  137. memset(addr, 0, sizeof(addr)); /* Clear the extraneous fields. */
  138. if (!*name) {
  139. /* Empty address is an error. */
  140. return -1;
  141. } else if (tor_inet_pton(AF_INET, name, &iaddr)) {
  142. /* It's an IPv4 IP. */
  143. if (family == AF_INET6)
  144. return -1;
  145. addr->family = AF_INET;
  146. memcpy(&addr->addr.in_addr, &iaddr, sizeof(struct in_addr));
  147. return 0;
  148. } else if (tor_inet_pton(AF_INET6, name, &iaddr6)) {
  149. if (family == AF_INET)
  150. return -1;
  151. addr->family = AF_INET6;
  152. memcpy(&addr->addr.in6_addr, &iaddr6, sizeof(struct in6_addr));
  153. return 0;
  154. } else {
  155. #ifdef HAVE_GETADDRINFO
  156. int err;
  157. struct addrinfo *res=NULL, *res_p;
  158. struct addrinfo *best=NULL;
  159. struct addrinfo hints;
  160. int result = -1;
  161. memset(&hints, 0, sizeof(hints));
  162. hints.ai_family = family;
  163. hints.ai_socktype = SOCK_STREAM;
  164. err = getaddrinfo(name, NULL, &hints, &res);
  165. if (!err) {
  166. best = NULL;
  167. for (res_p = res; res_p; res_p = res_p->ai_next) {
  168. if (family == AF_UNSPEC) {
  169. if (res_p->ai_family == AF_INET) {
  170. best = res_p;
  171. break;
  172. } else if (res_p->ai_family == AF_INET6 && !best) {
  173. best = res_p;
  174. }
  175. } else if (family == res_p->ai_family) {
  176. best = res_p;
  177. break;
  178. }
  179. }
  180. if (!best)
  181. best = res;
  182. if (best->ai_family == AF_INET) {
  183. addr->family = AF_INET;
  184. memcpy(&addr->addr.in_addr,
  185. &((struct sockaddr_in*)best->ai_addr)->sin_addr,
  186. sizeof(struct in_addr));
  187. result = 0;
  188. } else if (best->ai_family == AF_INET6) {
  189. addr->family = AF_INET6;
  190. memcpy(&addr->addr.in6_addr,
  191. &((struct sockaddr_in6*)best->ai_addr)->sin6_addr,
  192. sizeof(struct in6_addr));
  193. result = 0;
  194. }
  195. freeaddrinfo(res);
  196. return result;
  197. }
  198. return (err == EAI_AGAIN) ? 1 : -1;
  199. #else
  200. struct hostent *ent;
  201. int err;
  202. #ifdef HAVE_GETHOSTBYNAME_R_6_ARG
  203. char buf[2048];
  204. struct hostent hostent;
  205. int r;
  206. r = gethostbyname_r(name, &hostent, buf, sizeof(buf), &ent, &err);
  207. #elif defined(HAVE_GETHOSTBYNAME_R_5_ARG)
  208. char buf[2048];
  209. struct hostent hostent;
  210. ent = gethostbyname_r(name, &hostent, buf, sizeof(buf), &err);
  211. #elif defined(HAVE_GETHOSTBYNAME_R_3_ARG)
  212. struct hostent_data data;
  213. struct hostent hent;
  214. memset(&data, 0, sizeof(data));
  215. err = gethostbyname_r(name, &hent, &data);
  216. ent = err ? NULL : &hent;
  217. #else
  218. ent = gethostbyname(name);
  219. #ifdef MS_WINDOWS
  220. err = WSAGetLastError();
  221. #else
  222. err = h_errno;
  223. #endif
  224. #endif /* endif HAVE_GETHOSTBYNAME_R_6_ARG. */
  225. if (ent) {
  226. addr->family = ent->h_addrtype;
  227. if (ent->h_addrtype == AF_INET) {
  228. memcpy(&addr->addr.in_addr, ent->h_addr, sizeof(struct in_addr));
  229. } else if (ent->h_addrtype == AF_INET6) {
  230. memcpy(&addr->addr.in6_addr, ent->h_addr, sizeof(struct in6_addr));
  231. } else {
  232. tor_assert(0); /* gethostbyname() returned a bizarre addrtype */
  233. }
  234. return 0;
  235. }
  236. #ifdef MS_WINDOWS
  237. return (err == WSATRY_AGAIN) ? 1 : -1;
  238. #else
  239. return (err == TRY_AGAIN) ? 1 : -1;
  240. #endif
  241. #endif
  242. }
  243. }
  244. /** Return true iff <b>ip</b> is an IP reserved to localhost or local networks
  245. * in RFC1918 or RFC4193 or RFC4291. (fec0::/10, deprecated by RFC3879, is
  246. * also treated as internal for now.)
  247. */
  248. int
  249. tor_addr_is_internal(const tor_addr_t *addr, int for_listening)
  250. {
  251. uint32_t iph4 = 0;
  252. uint32_t iph6[4];
  253. sa_family_t v_family;
  254. v_family = tor_addr_family(addr);
  255. if (v_family == AF_INET) {
  256. iph4 = tor_addr_to_ipv4h(addr);
  257. } else if (v_family == AF_INET6) {
  258. if (tor_addr_is_v4(addr)) { /* v4-mapped */
  259. v_family = AF_INET;
  260. iph4 = ntohl(tor_addr_to_in6_addr32(addr)[3]);
  261. }
  262. }
  263. if (v_family == AF_INET6) {
  264. const uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  265. iph6[0] = ntohl(a32[0]);
  266. iph6[1] = ntohl(a32[1]);
  267. iph6[2] = ntohl(a32[2]);
  268. iph6[3] = ntohl(a32[3]);
  269. if (for_listening && !iph6[0] && !iph6[1] && !iph6[2] && !iph6[3]) /* :: */
  270. return 0;
  271. if (((iph6[0] & 0xfe000000) == 0xfc000000) || /* fc00/7 - RFC4193 */
  272. ((iph6[0] & 0xffc00000) == 0xfe800000) || /* fe80/10 - RFC4291 */
  273. ((iph6[0] & 0xffc00000) == 0xfec00000)) /* fec0/10 D- RFC3879 */
  274. return 1;
  275. if (!iph6[0] && !iph6[1] && !iph6[2] &&
  276. ((iph6[3] & 0xfffffffe) == 0x00000000)) /* ::/127 */
  277. return 1;
  278. return 0;
  279. } else if (v_family == AF_INET) {
  280. if (for_listening && !iph4) /* special case for binding to 0.0.0.0 */
  281. return 0;
  282. if (((iph4 & 0xff000000) == 0x0a000000) || /* 10/8 */
  283. ((iph4 & 0xff000000) == 0x00000000) || /* 0/8 */
  284. ((iph4 & 0xff000000) == 0x7f000000) || /* 127/8 */
  285. ((iph4 & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */
  286. ((iph4 & 0xfff00000) == 0xac100000) || /* 172.16/12 */
  287. ((iph4 & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */
  288. return 1;
  289. return 0;
  290. }
  291. /* unknown address family... assume it's not safe for external use */
  292. /* rather than tor_assert(0) */
  293. log_warn(LD_BUG, "tor_addr_is_internal() called with a non-IP address.");
  294. return 1;
  295. }
  296. /** Convert a tor_addr_t <b>addr</b> into a string, and store it in
  297. * <b>dest</b> of size <b>len</b>. Returns a pointer to dest on success,
  298. * or NULL on failure. If <b>decorate</b>, surround IPv6 addresses with
  299. * brackets.
  300. */
  301. const char *
  302. tor_addr_to_str(char *dest, const tor_addr_t *addr, int len, int decorate)
  303. {
  304. const char *ptr;
  305. tor_assert(addr && dest);
  306. switch (tor_addr_family(addr)) {
  307. case AF_INET:
  308. if (len<3)
  309. return NULL;
  310. ptr = tor_inet_ntop(AF_INET, &addr->addr.in_addr, dest, len);
  311. break;
  312. case AF_INET6:
  313. if (decorate)
  314. ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest+1, len-2);
  315. else
  316. ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest, len);
  317. if (ptr && decorate) {
  318. *dest = '[';
  319. memcpy(dest+strlen(dest), "]", 2);
  320. tor_assert(ptr == dest+1);
  321. ptr = dest;
  322. }
  323. break;
  324. default:
  325. return NULL;
  326. }
  327. return ptr;
  328. }
  329. /** Parse an .in-addr.arpa or .ip6.arpa address from <b>address</b>. Return 0
  330. * if this is not an .in-addr.arpa address or an .ip6.arpa address. Return -1
  331. * if this is an ill-formed .in-addr.arpa address or an .ip6.arpa address.
  332. * Also return -1 if <b>family</b> is not AF_UNSPEC, and the parsed address
  333. * family does not match <b>family</b>. On success, return 1, and store the
  334. * result, if any, into <b>result</b>, if provided.
  335. *
  336. * If <b>accept_regular</b> is set and the address is in neither recognized
  337. * reverse lookup hostname format, try parsing the address as a regular
  338. * IPv4 or IPv6 address too.
  339. */
  340. int
  341. tor_addr_parse_reverse_lookup_name(tor_addr_t *result, const char *address,
  342. int family, int accept_regular)
  343. {
  344. if (!strcasecmpend(address, ".in-addr.arpa")) {
  345. /* We have an in-addr.arpa address. */
  346. char buf[INET_NTOA_BUF_LEN];
  347. size_t len;
  348. struct in_addr inaddr;
  349. if (family == AF_INET6)
  350. return -1;
  351. len = strlen(address) - strlen(".in-addr.arpa");
  352. if (len >= INET_NTOA_BUF_LEN)
  353. return -1; /* Too long. */
  354. memcpy(buf, address, len);
  355. buf[len] = '\0';
  356. if (tor_inet_aton(buf, &inaddr) == 0)
  357. return -1; /* malformed. */
  358. /* reverse the bytes */
  359. inaddr.s_addr = (((inaddr.s_addr & 0x000000fful) << 24)
  360. |((inaddr.s_addr & 0x0000ff00ul) << 8)
  361. |((inaddr.s_addr & 0x00ff0000ul) >> 8)
  362. |((inaddr.s_addr & 0xff000000ul) >> 24));
  363. if (result) {
  364. memset(result, 0, sizeof(tor_addr_t));
  365. result->family = AF_INET;
  366. result->addr.in_addr.s_addr = inaddr.s_addr;
  367. }
  368. return 1;
  369. }
  370. if (!strcasecmpend(address, ".ip6.arpa")) {
  371. const char *cp;
  372. int i;
  373. int n0, n1;
  374. struct in6_addr in6;
  375. if (family == AF_INET)
  376. return -1;
  377. cp = address;
  378. for (i = 0; i < 16; ++i) {
  379. n0 = hex_decode_digit(*cp++); /* The low-order nybble appears first. */
  380. if (*cp++ != '.') return -1; /* Then a dot. */
  381. n1 = hex_decode_digit(*cp++); /* The high-order nybble appears first. */
  382. if (*cp++ != '.') return -1; /* Then another dot. */
  383. if (n0<0 || n1 < 0) /* Both nybbles must be hex. */
  384. return -1;
  385. /* We don't check the length of the string in here. But that's okay,
  386. * since we already know that the string ends with ".ip6.arpa", and
  387. * there is no way to frameshift .ip6.arpa so it fits into the pattern
  388. * of hexdigit, period, hexdigit, period that we enforce above.
  389. */
  390. /* Assign from low-byte to high-byte. */
  391. in6.s6_addr[15-i] = n0 | (n1 << 4);
  392. }
  393. if (strcasecmp(cp, "ip6.arpa"))
  394. return -1;
  395. if (result) {
  396. result->family = AF_INET6;
  397. memcpy(&result->addr.in6_addr, &in6, sizeof(in6));
  398. }
  399. return 1;
  400. }
  401. if (accept_regular) {
  402. tor_addr_t tmp;
  403. int r = tor_addr_from_str(&tmp, address);
  404. if (r < 0)
  405. return 0;
  406. if (r != family && family != AF_UNSPEC)
  407. return -1;
  408. if (result)
  409. memcpy(result, &tmp, sizeof(tor_addr_t));
  410. return 1;
  411. }
  412. return 0;
  413. }
  414. /** Convert <b>addr</b> to an in-addr.arpa name or a .ip6.arpa name, and store
  415. * the result in the <b>outlen</b>-byte buffer at <b>out</b>. Return 0 on
  416. * success, -1 on failure. */
  417. int
  418. tor_addr_to_reverse_lookup_name(char *out, size_t outlen,
  419. const tor_addr_t *addr)
  420. {
  421. if (addr->family == AF_INET) {
  422. uint32_t a = tor_addr_to_ipv4h(addr);
  423. return tor_snprintf(out, outlen, "%d.%d.%d.%d.in-addr.arpa",
  424. (int)(uint8_t)((a )&0xff),
  425. (int)(uint8_t)((a>>8 )&0xff),
  426. (int)(uint8_t)((a>>16)&0xff),
  427. (int)(uint8_t)((a>>24)&0xff));
  428. } else if (addr->family == AF_INET6) {
  429. int i;
  430. char *cp = out;
  431. if (outlen < REVERSE_LOOKUP_NAME_BUF_LEN)
  432. return -1;
  433. for (i = 15; i >= 0; --i) {
  434. uint8_t byte = addr->addr.in6_addr.s6_addr[i];
  435. *cp++ = "0123456789abcdef"[byte & 0x0f];
  436. *cp++ = '.';
  437. *cp++ = "0123456789abcdef"[byte >> 4];
  438. *cp++ = '.';
  439. }
  440. memcpy(cp, "ip6.arpa", 9); /* 8 characters plus nul */
  441. return 0;
  442. }
  443. return -1;
  444. }
  445. /** Parse a string <b>s</b> containing an IPv4/IPv6 address, and possibly
  446. * a mask and port or port range. Store the parsed address in
  447. * <b>addr_out</b>, a mask (if any) in <b>mask_out</b>, and port(s) (if any)
  448. * in <b>port_min_out</b> and <b>port_max_out</b>.
  449. *
  450. * The syntax is:
  451. * Address OptMask OptPortRange
  452. * Address ::= IPv4Address / "[" IPv6Address "]" / "*"
  453. * OptMask ::= "/" Integer /
  454. * OptPortRange ::= ":*" / ":" Integer / ":" Integer "-" Integer /
  455. *
  456. * - If mask, minport, or maxport are NULL, we do not want these
  457. * options to be set; treat them as an error if present.
  458. * - If the string has no mask, the mask is set to /32 (IPv4) or /128 (IPv6).
  459. * - If the string has one port, it is placed in both min and max port
  460. * variables.
  461. * - If the string has no port(s), port_(min|max)_out are set to 1 and 65535.
  462. *
  463. * Return an address family on success, or -1 if an invalid address string is
  464. * provided.
  465. */
  466. int
  467. tor_addr_parse_mask_ports(const char *s, tor_addr_t *addr_out,
  468. maskbits_t *maskbits_out,
  469. uint16_t *port_min_out, uint16_t *port_max_out)
  470. {
  471. char *base = NULL, *address, *mask = NULL, *port = NULL, *rbracket = NULL;
  472. char *endptr;
  473. int any_flag=0, v4map=0;
  474. tor_assert(s);
  475. tor_assert(addr_out);
  476. /* IP, [], /mask, ports */
  477. #define MAX_ADDRESS_LENGTH (TOR_ADDR_BUF_LEN+2+(1+INET_NTOA_BUF_LEN)+12+1)
  478. if (strlen(s) > MAX_ADDRESS_LENGTH) {
  479. log_warn(LD_GENERAL, "Impossibly long IP %s; rejecting", escaped(s));
  480. goto err;
  481. }
  482. base = tor_strdup(s);
  483. /* Break 'base' into separate strings. */
  484. address = base;
  485. if (*address == '[') { /* Probably IPv6 */
  486. address++;
  487. rbracket = strchr(address, ']');
  488. if (!rbracket) {
  489. log_warn(LD_GENERAL,
  490. "No closing IPv6 bracket in address pattern; rejecting.");
  491. goto err;
  492. }
  493. }
  494. mask = strchr((rbracket?rbracket:address),'/');
  495. port = strchr((mask?mask:(rbracket?rbracket:address)), ':');
  496. if (port)
  497. *port++ = '\0';
  498. if (mask)
  499. *mask++ = '\0';
  500. if (rbracket)
  501. *rbracket = '\0';
  502. if (port && mask)
  503. tor_assert(port > mask);
  504. if (mask && rbracket)
  505. tor_assert(mask > rbracket);
  506. /* Now "address" is the a.b.c.d|'*'|abcd::1 part...
  507. * "mask" is the Mask|Maskbits part...
  508. * and "port" is the *|port|min-max part.
  509. */
  510. /* Process the address portion */
  511. memset(addr_out, 0, sizeof(tor_addr_t));
  512. if (!strcmp(address, "*")) {
  513. addr_out->family = AF_INET; /* AF_UNSPEC ???? XXXX_IP6 */
  514. any_flag = 1;
  515. } else if (tor_inet_pton(AF_INET6, address, &addr_out->addr.in6_addr) > 0) {
  516. addr_out->family = AF_INET6;
  517. } else if (tor_inet_pton(AF_INET, address, &addr_out->addr.in_addr) > 0) {
  518. addr_out->family = AF_INET;
  519. } else {
  520. log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
  521. escaped(address));
  522. goto err;
  523. }
  524. v4map = tor_addr_is_v4(addr_out);
  525. /*
  526. #ifdef ALWAYS_V6_MAP
  527. if (v_family == AF_INET) {
  528. v_family = AF_INET6;
  529. IN_ADDR6(addr_out).s6_addr32[3] = IN6_ADDRESS(addr_out).s_addr;
  530. memset(&IN6_ADDRESS(addr_out), 0, 10);
  531. IN_ADDR6(addr_out).s6_addr16[5] = 0xffff;
  532. }
  533. #else
  534. if (v_family == AF_INET6 && v4map) {
  535. v_family = AF_INET;
  536. IN4_ADDRESS((addr_out).s_addr = IN6_ADDRESS(addr_out).s6_addr32[3];
  537. }
  538. #endif
  539. */
  540. /* Parse mask */
  541. if (maskbits_out) {
  542. int bits = 0;
  543. struct in_addr v4mask;
  544. if (mask) { /* the caller (tried to) specify a mask */
  545. bits = (int) strtol(mask, &endptr, 10);
  546. if (!*endptr) { /* strtol converted everything, so it was an integer */
  547. if ((bits<0 || bits>128) ||
  548. ((tor_addr_family(addr_out) == AF_INET) && bits > 32)) {
  549. log_warn(LD_GENERAL,
  550. "Bad number of mask bits (%d) on address range; rejecting.",
  551. bits);
  552. goto err;
  553. }
  554. } else { /* mask might still be an address-style mask */
  555. if (tor_inet_pton(AF_INET, mask, &v4mask) > 0) {
  556. bits = addr_mask_get_bits(ntohl(v4mask.s_addr));
  557. if (bits < 0) {
  558. log_warn(LD_GENERAL,
  559. "IPv4-style mask %s is not a prefix address; rejecting.",
  560. escaped(mask));
  561. goto err;
  562. }
  563. } else { /* Not IPv4; we don't do address-style IPv6 masks. */
  564. log_warn(LD_GENERAL,
  565. "Malformed mask on address range %s; rejecting.",
  566. escaped(s));
  567. goto err;
  568. }
  569. }
  570. if (tor_addr_family(addr_out) == AF_INET6 && v4map) {
  571. if (bits > 32 && bits < 96) { /* Crazy */
  572. log_warn(LD_GENERAL,
  573. "Bad mask bits %i for V4-mapped V6 address; rejecting.",
  574. bits);
  575. goto err;
  576. }
  577. /* XXXX_IP6 is this really what we want? */
  578. bits = 96 + bits%32; /* map v4-mapped masks onto 96-128 bits */
  579. }
  580. } else { /* pick an appropriate mask, as none was given */
  581. if (any_flag)
  582. bits = 0; /* This is okay whether it's V6 or V4 (FIX V4-mapped V6!) */
  583. else if (tor_addr_family(addr_out) == AF_INET)
  584. bits = 32;
  585. else if (tor_addr_family(addr_out) == AF_INET6)
  586. bits = 128;
  587. }
  588. *maskbits_out = (maskbits_t) bits;
  589. } else {
  590. if (mask) {
  591. log_warn(LD_GENERAL,
  592. "Unexpected mask in addrss %s; rejecting", escaped(s));
  593. goto err;
  594. }
  595. }
  596. /* Parse port(s) */
  597. if (port_min_out) {
  598. uint16_t port2;
  599. if (!port_max_out) /* caller specified one port; fake the second one */
  600. port_max_out = &port2;
  601. if (parse_port_range(port, port_min_out, port_max_out) < 0) {
  602. goto err;
  603. } else if ((*port_min_out != *port_max_out) && port_max_out == &port2) {
  604. log_warn(LD_GENERAL,
  605. "Wanted one port from address range, but there are two.");
  606. port_max_out = NULL; /* caller specified one port, so set this back */
  607. goto err;
  608. }
  609. } else {
  610. if (port) {
  611. log_warn(LD_GENERAL,
  612. "Unexpected ports in addrss %s; rejecting", escaped(s));
  613. goto err;
  614. }
  615. }
  616. tor_free(base);
  617. return tor_addr_family(addr_out);
  618. err:
  619. tor_free(base);
  620. return -1;
  621. }
  622. /** Determine whether an address is IPv4, either native or ipv4-mapped ipv6.
  623. * Note that this is about representation only, as any decent stack will
  624. * reject ipv4-mapped addresses received on the wire (and won't use them
  625. * on the wire either).
  626. */
  627. int
  628. tor_addr_is_v4(const tor_addr_t *addr)
  629. {
  630. tor_assert(addr);
  631. if (tor_addr_family(addr) == AF_INET)
  632. return 1;
  633. if (tor_addr_family(addr) == AF_INET6) {
  634. /* First two don't need to be ordered */
  635. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  636. if (a32[0] == 0 && a32[1] == 0 && ntohl(a32[2]) == 0x0000ffffu)
  637. return 1;
  638. }
  639. return 0; /* Not IPv4 - unknown family or a full-blood IPv6 address */
  640. }
  641. /** Determine whether an address <b>addr</b> is null, either all zeroes or
  642. * belonging to family AF_UNSPEC.
  643. */
  644. int
  645. tor_addr_is_null(const tor_addr_t *addr)
  646. {
  647. tor_assert(addr);
  648. switch (tor_addr_family(addr)) {
  649. case AF_INET6: {
  650. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  651. return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 0);
  652. }
  653. case AF_INET:
  654. return (tor_addr_to_ipv4n(addr) == 0);
  655. case AF_UNSPEC:
  656. return 1;
  657. default:
  658. log_warn(LD_BUG, "Called with unknown address family %d",
  659. (int)tor_addr_family(addr));
  660. return 0;
  661. }
  662. //return 1;
  663. }
  664. /** Return true iff <b>addr</b> is a loopback address */
  665. int
  666. tor_addr_is_loopback(const tor_addr_t *addr)
  667. {
  668. tor_assert(addr);
  669. switch (tor_addr_family(addr)) {
  670. case AF_INET6: {
  671. /* ::1 */
  672. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  673. return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 1);
  674. }
  675. case AF_INET:
  676. /* 127.0.0.1 */
  677. return (tor_addr_to_ipv4h(addr) & 0xff000000) == 0x7f000000;
  678. case AF_UNSPEC:
  679. return 0;
  680. default:
  681. tor_fragile_assert();
  682. return 0;
  683. }
  684. }
  685. /** Set <b>dest</b> to equal the IPv4 address in <b>v4addr</b> (given in
  686. * network order. */
  687. void
  688. tor_addr_from_ipv4n(tor_addr_t *dest, uint32_t v4addr)
  689. {
  690. tor_assert(dest);
  691. memset(dest, 0, sizeof(tor_addr_t));
  692. dest->family = AF_INET;
  693. dest->addr.in_addr.s_addr = v4addr;
  694. }
  695. /** Set <b>dest</b> to equal the IPv6 address in the 16 bytes at
  696. * <b>ipv6_bytes</b>. */
  697. void
  698. tor_addr_from_ipv6_bytes(tor_addr_t *dest, const char *ipv6_bytes)
  699. {
  700. tor_assert(dest);
  701. tor_assert(ipv6_bytes);
  702. memset(dest, 0, sizeof(tor_addr_t));
  703. dest->family = AF_INET6;
  704. memcpy(dest->addr.in6_addr.s6_addr, ipv6_bytes, 16);
  705. }
  706. /** Set <b>dest</b> equal to the IPv6 address in the in6_addr <b>in6</b>. */
  707. void
  708. tor_addr_from_in6(tor_addr_t *dest, const struct in6_addr *in6)
  709. {
  710. tor_addr_from_ipv6_bytes(dest, (const char*)in6->s6_addr);
  711. }
  712. /** Copy a tor_addr_t from <b>src</b> to <b>dest</b>.
  713. */
  714. void
  715. tor_addr_copy(tor_addr_t *dest, const tor_addr_t *src)
  716. {
  717. tor_assert(src);
  718. tor_assert(dest);
  719. memcpy(dest, src, sizeof(tor_addr_t));
  720. }
  721. /** Given two addresses <b>addr1</b> and <b>addr2</b>, return 0 if the two
  722. * addresses are equivalent under the mask mbits, less than 0 if addr1
  723. * preceeds addr2, and greater than 0 otherwise.
  724. *
  725. * Different address families (IPv4 vs IPv6) are always considered unequal.
  726. * NOT QUITE XXXX DOCDOC.
  727. */
  728. int
  729. tor_addr_compare(const tor_addr_t *addr1, const tor_addr_t *addr2,
  730. tor_addr_comparison_t how)
  731. {
  732. return tor_addr_compare_masked(addr1, addr2, 128, how);
  733. }
  734. /** As tor_addr_compare(), but only looks at the first <b>mask</b> bits of
  735. * the address.
  736. *
  737. * Reduce over-specific masks (>128 for ipv6, >32 for ipv4) to 128 or 32.
  738. */
  739. int
  740. tor_addr_compare_masked(const tor_addr_t *addr1, const tor_addr_t *addr2,
  741. maskbits_t mbits, tor_addr_comparison_t how)
  742. {
  743. uint32_t ip4a=0, ip4b=0;
  744. sa_family_t v_family[2];
  745. int idx;
  746. uint32_t masked_a, masked_b;
  747. tor_assert(addr1 && addr2);
  748. if (how == CMP_EXACT) {
  749. int r = ((int)addr2->family) - ((int)addr1->family);
  750. if (r) return r;
  751. switch (addr1->family) {
  752. case AF_UNSPEC:
  753. return 0; /* All unspecified addresses are equal */
  754. case AF_INET: {
  755. uint32_t a1 = ntohl(addr1->addr.in_addr.s_addr);
  756. uint32_t a2 = ntohl(addr2->addr.in_addr.s_addr);
  757. if (mbits > 32)
  758. mbits = 32;
  759. a1 >>= (32-mbits);
  760. a2 >>= (32-mbits);
  761. return (a1 < a2) ? -1 : (a1 == a2) ? 0 : 1;
  762. }
  763. case AF_INET6: {
  764. const uint8_t *a1 = addr1->addr.in6_addr.s6_addr;
  765. const uint8_t *a2 = addr2->addr.in6_addr.s6_addr;
  766. const int bytes = mbits >> 3;
  767. const int leftover_bits = mbits & 7;
  768. if (bytes && (r = memcmp(a1, a2, bytes))) {
  769. return r;
  770. } else if (leftover_bits) {
  771. uint8_t b1 = a1[bytes] >> (8-leftover_bits);
  772. uint8_t b2 = a2[bytes] >> (8-leftover_bits);
  773. return (b1 < b2) ? -1 : (b1 == b2) ? 0 : 1;
  774. } else {
  775. return 0;
  776. }
  777. }
  778. default:
  779. tor_fragile_assert();
  780. return 0;
  781. }
  782. }
  783. /* XXXX021 this code doesn't handle mask bits right it's using v4-mapped v6
  784. * addresses. If I ask whether ::ffff:1.2.3.4 and ::ffff:1.2.7.8 are the
  785. * same in the first 16 bits, it will say "yes." That's not so intuitive.
  786. *
  787. * XXXX021 Also, it's way too complicated.
  788. */
  789. v_family[0] = tor_addr_family(addr1);
  790. v_family[1] = tor_addr_family(addr2);
  791. /* All UNSPEC addresses are equal; they are unequal to all other addresses.*/
  792. if (v_family[0] == AF_UNSPEC) {
  793. if (v_family[1] == AF_UNSPEC)
  794. return 0;
  795. else
  796. return 1;
  797. } else {
  798. if (v_family[1] == AF_UNSPEC)
  799. return -1;
  800. }
  801. if (v_family[0] == AF_INET) { /* If this is native IPv4, note the address */
  802. /* Later we risk overwriting a v4-mapped address */
  803. ip4a = tor_addr_to_ipv4h(addr1);
  804. } else if ((v_family[0] == AF_INET6) && tor_addr_is_v4(addr1)) {
  805. v_family[0] = AF_INET;
  806. ip4a = tor_addr_to_mapped_ipv4h(addr1);
  807. }
  808. if (v_family[1] == AF_INET) { /* If this is native IPv4, note the address */
  809. /* Later we risk overwriting a v4-mapped address */
  810. ip4b = tor_addr_to_ipv4h(addr2);
  811. } else if ((v_family[1] == AF_INET6) && tor_addr_is_v4(addr2)) {
  812. v_family[1] = AF_INET;
  813. ip4b = tor_addr_to_mapped_ipv4h(addr2);
  814. }
  815. if (v_family[0] > v_family[1]) /* Comparison of virtual families */
  816. return 1;
  817. else if (v_family[0] < v_family[1])
  818. return -1;
  819. if (mbits == 0) /* Under a complete wildcard mask, consider them equal */
  820. return 0;
  821. if (v_family[0] == AF_INET) { /* Real or mapped IPv4 */
  822. if (mbits >= 32) {
  823. masked_a = ip4a;
  824. masked_b = ip4b;
  825. } else if (mbits == 0) {
  826. return 0;
  827. } else {
  828. masked_a = ip4a >> (32-mbits);
  829. masked_b = ip4b >> (32-mbits);
  830. }
  831. if (masked_a < masked_b)
  832. return -1;
  833. else if (masked_a > masked_b)
  834. return 1;
  835. return 0;
  836. } else if (v_family[0] == AF_INET6) { /* Real IPv6 */
  837. const uint32_t *a1 = tor_addr_to_in6_addr32(addr1);
  838. const uint32_t *a2 = tor_addr_to_in6_addr32(addr2);
  839. for (idx = 0; idx < 4; ++idx) {
  840. uint32_t masked_a = ntohl(a1[idx]);
  841. uint32_t masked_b = ntohl(a2[idx]);
  842. if (!mbits) {
  843. return 0; /* Mask covers both addresses from here on */
  844. } else if (mbits < 32) {
  845. masked_a >>= (32-mbits);
  846. masked_b >>= (32-mbits);
  847. }
  848. if (masked_a > masked_b)
  849. return 1;
  850. else if (masked_a < masked_b)
  851. return -1;
  852. if (mbits < 32)
  853. return 0;
  854. mbits -= 32;
  855. }
  856. return 0;
  857. }
  858. tor_assert(0); /* Unknown address family */
  859. return -1; /* unknown address family, return unequal? */
  860. }
  861. /** Return a hash code based on the address addr */
  862. unsigned int
  863. tor_addr_hash(const tor_addr_t *addr)
  864. {
  865. switch (tor_addr_family(addr)) {
  866. case AF_INET:
  867. return tor_addr_to_ipv4h(addr);
  868. case AF_UNSPEC:
  869. return 0x4e4d5342;
  870. case AF_INET6: {
  871. const uint32_t *u = tor_addr_to_in6_addr32(addr);
  872. return u[0] + u[1] + u[2] + u[3];
  873. }
  874. default:
  875. tor_fragile_assert();
  876. return 0;
  877. }
  878. }
  879. /** Return a newly allocated string with a representation of <b>addr</b>. */
  880. char *
  881. tor_dup_addr(const tor_addr_t *addr)
  882. {
  883. char buf[TOR_ADDR_BUF_LEN];
  884. tor_addr_to_str(buf, addr, sizeof(buf), 0);
  885. return tor_strdup(buf);
  886. }
  887. /** Copy the address in <b>src</b> to <b>dest</b> */
  888. void
  889. tor_addr_assign(tor_addr_t *dest, const tor_addr_t *src)
  890. {
  891. memcpy(dest, src, sizeof(tor_addr_t));
  892. }
  893. /** Return a string representing the address <b>addr</b>. This string is
  894. * statically allocated, and must not be freed. Each call to
  895. * <b>fmt_addr</b> invalidates the last result of the function. This
  896. * function is not thread-safe. */
  897. const char *
  898. fmt_addr(const tor_addr_t *addr)
  899. {
  900. static char buf[TOR_ADDR_BUF_LEN];
  901. if (!addr) return "<null>";
  902. tor_addr_to_str(buf, addr, sizeof(buf), 0);
  903. return buf;
  904. }
  905. /** Convert the string in <b>src</b> to a tor_addr_t <b>addr</b>. The string
  906. * may be an IPv4 address, an IPv6 address, or an IPv6 address surrounded by
  907. * square brackets.
  908. *
  909. * Return an address family on success, or -1 if an invalid address string is
  910. * provided. */
  911. int
  912. tor_addr_from_str(tor_addr_t *addr, const char *src)
  913. {
  914. char *tmp = NULL; /* Holds substring if we got a dotted quad. */
  915. int result;
  916. tor_assert(addr && src);
  917. if (src[0] == '[' && src[1])
  918. src = tmp = tor_strndup(src+1, strlen(src)-2);
  919. if (tor_inet_pton(AF_INET6, src, &addr->addr.in6_addr) > 0) {
  920. result = addr->family = AF_INET6;
  921. } else if (tor_inet_pton(AF_INET, src, &addr->addr.in_addr) > 0) {
  922. result = addr->family = AF_INET;
  923. } else {
  924. result = -1;
  925. }
  926. tor_free(tmp);
  927. return result;
  928. }
  929. /** Parse an address or address-port combination from <b>s</b>, and put the
  930. result in <b>addr_out</b> and (optionally) <b>port_out</b>. Return 0 on
  931. success, negative on failure.*/
  932. int
  933. tor_addr_port_parse(const char *s, tor_addr_t *addr_out, uint16_t *port_out)
  934. {
  935. const char *port;
  936. tor_addr_t addr;
  937. uint16_t portval;
  938. char *tmp = NULL;
  939. tor_assert(s);
  940. tor_assert(addr_out);
  941. s = eat_whitespace(s);
  942. if (*s == '[') {
  943. port = strstr(s, "]");
  944. if (!port)
  945. goto err;
  946. tmp = tor_strndup(s+1, port-s);
  947. port = port+1;
  948. if (*port == ':')
  949. port++;
  950. else
  951. port = NULL;
  952. } else {
  953. port = strchr(s, ':');
  954. if (port)
  955. tmp = tor_strndup(s, port-s);
  956. else
  957. tmp = tor_strdup(s);
  958. if (port)
  959. ++port;
  960. }
  961. if (tor_addr_lookup(tmp, AF_UNSPEC, &addr) < 0)
  962. goto err;
  963. tor_free(tmp);
  964. if (port) {
  965. portval = (int) tor_parse_long(port, 10, 1, 65535, NULL, NULL);
  966. if (!portval)
  967. goto err;
  968. } else {
  969. portval = 0;
  970. }
  971. if (port_out)
  972. *port_out = portval;
  973. tor_addr_copy(addr_out, &addr);
  974. return 0;
  975. err:
  976. tor_free(tmp);
  977. return -1;
  978. }
  979. /** Set *<b>addr</b> to the IP address (if any) of whatever interface
  980. * connects to the internet. This address should only be used in checking
  981. * whether our address has changed. Return 0 on success, -1 on failure.
  982. */
  983. int
  984. get_interface_address6(int severity, sa_family_t family, tor_addr_t *addr)
  985. {
  986. int sock=-1, r=-1;
  987. struct sockaddr_storage my_addr, target_addr;
  988. socklen_t my_addr_len;
  989. tor_assert(addr);
  990. memset(addr, 0, sizeof(tor_addr_t));
  991. memset(&target_addr, 0, sizeof(target_addr));
  992. my_addr_len = (socklen_t)sizeof(my_addr);
  993. /* Use the "discard" service port */
  994. ((struct sockaddr_in*)&target_addr)->sin_port = 9;
  995. /* Don't worry: no packets are sent. We just need to use a real address
  996. * on the actual internet. */
  997. if (family == AF_INET6) {
  998. struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&target_addr;
  999. sock = tor_open_socket(PF_INET6,SOCK_DGRAM,IPPROTO_UDP);
  1000. my_addr_len = (socklen_t)sizeof(struct sockaddr_in6);
  1001. sin6->sin6_family = AF_INET6;
  1002. S6_ADDR16(sin6->sin6_addr)[0] = htons(0x2002); /* 2002:: */
  1003. } else if (family == AF_INET) {
  1004. struct sockaddr_in *sin = (struct sockaddr_in*)&target_addr;
  1005. sock = tor_open_socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP);
  1006. my_addr_len = (socklen_t)sizeof(struct sockaddr_in);
  1007. sin->sin_family = AF_INET;
  1008. sin->sin_addr.s_addr = htonl(0x12000001); /* 18.0.0.1 */
  1009. } else {
  1010. return -1;
  1011. }
  1012. if (sock < 0) {
  1013. int e = tor_socket_errno(-1);
  1014. log_fn(severity, LD_NET, "unable to create socket: %s",
  1015. tor_socket_strerror(e));
  1016. goto err;
  1017. }
  1018. if (connect(sock,(struct sockaddr *)&target_addr,
  1019. (socklen_t)sizeof(target_addr))<0) {
  1020. int e = tor_socket_errno(sock);
  1021. log_fn(severity, LD_NET, "connect() failed: %s", tor_socket_strerror(e));
  1022. goto err;
  1023. }
  1024. if (getsockname(sock,(struct sockaddr*)&my_addr, &my_addr_len)) {
  1025. int e = tor_socket_errno(sock);
  1026. log_fn(severity, LD_NET, "getsockname() to determine interface failed: %s",
  1027. tor_socket_strerror(e));
  1028. goto err;
  1029. }
  1030. memcpy(addr, &my_addr, sizeof(tor_addr_t));
  1031. r=0;
  1032. err:
  1033. if (sock >= 0)
  1034. tor_close_socket(sock);
  1035. return r;
  1036. }
  1037. /* ======
  1038. * IPv4 helpers
  1039. * XXXX022 IPv6 deprecate some of these.
  1040. */
  1041. /** Return true iff <b>ip</b> (in host order) is an IP reserved to localhost,
  1042. * or reserved for local networks by RFC 1918.
  1043. */
  1044. int
  1045. is_internal_IP(uint32_t ip, int for_listening)
  1046. {
  1047. tor_addr_t myaddr;
  1048. myaddr.family = AF_INET;
  1049. myaddr.addr.in_addr.s_addr = htonl(ip);
  1050. return tor_addr_is_internal(&myaddr, for_listening);
  1051. }
  1052. /** Parse a string of the form "host[:port]" from <b>addrport</b>. If
  1053. * <b>address</b> is provided, set *<b>address</b> to a copy of the
  1054. * host portion of the string. If <b>addr</b> is provided, try to
  1055. * resolve the host portion of the string and store it into
  1056. * *<b>addr</b> (in host byte order). If <b>port_out</b> is provided,
  1057. * store the port number into *<b>port_out</b>, or 0 if no port is given.
  1058. * If <b>port_out</b> is NULL, then there must be no port number in
  1059. * <b>addrport</b>.
  1060. * Return 0 on success, -1 on failure.
  1061. */
  1062. int
  1063. parse_addr_port(int severity, const char *addrport, char **address,
  1064. uint32_t *addr, uint16_t *port_out)
  1065. {
  1066. const char *colon;
  1067. char *_address = NULL;
  1068. int _port;
  1069. int ok = 1;
  1070. tor_assert(addrport);
  1071. colon = strchr(addrport, ':');
  1072. if (colon) {
  1073. _address = tor_strndup(addrport, colon-addrport);
  1074. _port = (int) tor_parse_long(colon+1,10,1,65535,NULL,NULL);
  1075. if (!_port) {
  1076. log_fn(severity, LD_GENERAL, "Port %s out of range", escaped(colon+1));
  1077. ok = 0;
  1078. }
  1079. if (!port_out) {
  1080. char *esc_addrport = esc_for_log(addrport);
  1081. log_fn(severity, LD_GENERAL,
  1082. "Port %s given on %s when not required",
  1083. escaped(colon+1), esc_addrport);
  1084. tor_free(esc_addrport);
  1085. ok = 0;
  1086. }
  1087. } else {
  1088. _address = tor_strdup(addrport);
  1089. _port = 0;
  1090. }
  1091. if (addr) {
  1092. /* There's an addr pointer, so we need to resolve the hostname. */
  1093. if (tor_lookup_hostname(_address,addr)) {
  1094. log_fn(severity, LD_NET, "Couldn't look up %s", escaped(_address));
  1095. ok = 0;
  1096. *addr = 0;
  1097. }
  1098. }
  1099. if (address && ok) {
  1100. *address = _address;
  1101. } else {
  1102. if (address)
  1103. *address = NULL;
  1104. tor_free(_address);
  1105. }
  1106. if (port_out)
  1107. *port_out = ok ? ((uint16_t) _port) : 0;
  1108. return ok ? 0 : -1;
  1109. }
  1110. /** If <b>mask</b> is an address mask for a bit-prefix, return the number of
  1111. * bits. Otherwise, return -1. */
  1112. int
  1113. addr_mask_get_bits(uint32_t mask)
  1114. {
  1115. int i;
  1116. if (mask == 0)
  1117. return 0;
  1118. if (mask == 0xFFFFFFFFu)
  1119. return 32;
  1120. for (i=0; i<=32; ++i) {
  1121. if (mask == (uint32_t) ~((1u<<(32-i))-1)) {
  1122. return i;
  1123. }
  1124. }
  1125. return -1;
  1126. }
  1127. /** Compare two addresses <b>a1</b> and <b>a2</b> for equality under a
  1128. * netmask of <b>mbits</b> bits. Return -1, 0, or 1.
  1129. *
  1130. * XXXX_IP6 Temporary function to allow masks as bitcounts everywhere. This
  1131. * will be replaced with an IPv6-aware version as soon as 32-bit addresses are
  1132. * no longer passed around.
  1133. */
  1134. int
  1135. addr_mask_cmp_bits(uint32_t a1, uint32_t a2, maskbits_t bits)
  1136. {
  1137. if (bits > 32)
  1138. bits = 32;
  1139. else if (bits == 0)
  1140. return 0;
  1141. a1 >>= (32-bits);
  1142. a2 >>= (32-bits);
  1143. if (a1 < a2)
  1144. return -1;
  1145. else if (a1 > a2)
  1146. return 1;
  1147. else
  1148. return 0;
  1149. }
  1150. /** Parse a string <b>s</b> in the format of (*|port(-maxport)?)?, setting the
  1151. * various *out pointers as appropriate. Return 0 on success, -1 on failure.
  1152. */
  1153. int
  1154. parse_port_range(const char *port, uint16_t *port_min_out,
  1155. uint16_t *port_max_out)
  1156. {
  1157. int port_min, port_max, ok;
  1158. tor_assert(port_min_out);
  1159. tor_assert(port_max_out);
  1160. if (!port || *port == '\0' || strcmp(port, "*") == 0) {
  1161. port_min = 1;
  1162. port_max = 65535;
  1163. } else {
  1164. char *endptr = NULL;
  1165. port_min = (int)tor_parse_long(port, 10, 0, 65535, &ok, &endptr);
  1166. if (!ok) {
  1167. log_warn(LD_GENERAL,
  1168. "Malformed port %s on address range; rejecting.",
  1169. escaped(port));
  1170. return -1;
  1171. } else if (endptr && *endptr == '-') {
  1172. port = endptr+1;
  1173. endptr = NULL;
  1174. port_max = (int)tor_parse_long(port, 10, 1, 65536, &ok, &endptr);
  1175. if (!ok) {
  1176. log_warn(LD_GENERAL,
  1177. "Malformed port %s on address range; rejecting.",
  1178. escaped(port));
  1179. return -1;
  1180. }
  1181. } else {
  1182. port_max = port_min;
  1183. }
  1184. if (port_min > port_max) {
  1185. log_warn(LD_GENERAL, "Insane port range on address policy; rejecting.");
  1186. return -1;
  1187. }
  1188. }
  1189. if (port_min < 1)
  1190. port_min = 1;
  1191. if (port_max > 65535)
  1192. port_max = 65535;
  1193. *port_min_out = (uint16_t) port_min;
  1194. *port_max_out = (uint16_t) port_max;
  1195. return 0;
  1196. }
  1197. /** Parse a string <b>s</b> in the format of
  1198. * (IP(/mask|/mask-bits)?|*)(:(*|port(-maxport))?)?, setting the various
  1199. * *out pointers as appropriate. Return 0 on success, -1 on failure.
  1200. */
  1201. int
  1202. parse_addr_and_port_range(const char *s, uint32_t *addr_out,
  1203. maskbits_t *maskbits_out, uint16_t *port_min_out,
  1204. uint16_t *port_max_out)
  1205. {
  1206. char *address;
  1207. char *mask, *port, *endptr;
  1208. struct in_addr in;
  1209. int bits;
  1210. tor_assert(s);
  1211. tor_assert(addr_out);
  1212. tor_assert(maskbits_out);
  1213. tor_assert(port_min_out);
  1214. tor_assert(port_max_out);
  1215. address = tor_strdup(s);
  1216. /* Break 'address' into separate strings.
  1217. */
  1218. mask = strchr(address,'/');
  1219. port = strchr(mask?mask:address,':');
  1220. if (mask)
  1221. *mask++ = '\0';
  1222. if (port)
  1223. *port++ = '\0';
  1224. /* Now "address" is the IP|'*' part...
  1225. * "mask" is the Mask|Maskbits part...
  1226. * and "port" is the *|port|min-max part.
  1227. */
  1228. if (strcmp(address,"*")==0) {
  1229. *addr_out = 0;
  1230. } else if (tor_inet_aton(address, &in) != 0) {
  1231. *addr_out = ntohl(in.s_addr);
  1232. } else {
  1233. log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
  1234. escaped(address));
  1235. goto err;
  1236. }
  1237. if (!mask) {
  1238. if (strcmp(address,"*")==0)
  1239. *maskbits_out = 0;
  1240. else
  1241. *maskbits_out = 32;
  1242. } else {
  1243. endptr = NULL;
  1244. bits = (int) strtol(mask, &endptr, 10);
  1245. if (!*endptr) {
  1246. /* strtol handled the whole mask. */
  1247. if (bits < 0 || bits > 32) {
  1248. log_warn(LD_GENERAL,
  1249. "Bad number of mask bits on address range; rejecting.");
  1250. goto err;
  1251. }
  1252. *maskbits_out = bits;
  1253. } else if (tor_inet_aton(mask, &in) != 0) {
  1254. bits = addr_mask_get_bits(ntohl(in.s_addr));
  1255. if (bits < 0) {
  1256. log_warn(LD_GENERAL,
  1257. "Mask %s on address range isn't a prefix; dropping",
  1258. escaped(mask));
  1259. goto err;
  1260. }
  1261. *maskbits_out = bits;
  1262. } else {
  1263. log_warn(LD_GENERAL,
  1264. "Malformed mask %s on address range; rejecting.",
  1265. escaped(mask));
  1266. goto err;
  1267. }
  1268. }
  1269. if (parse_port_range(port, port_min_out, port_max_out)<0)
  1270. goto err;
  1271. tor_free(address);
  1272. return 0;
  1273. err:
  1274. tor_free(address);
  1275. return -1;
  1276. }
  1277. /** Given an IPv4 in_addr struct *<b>in</b> (in network order, as usual),
  1278. * write it as a string into the <b>buf_len</b>-byte buffer in
  1279. * <b>buf</b>.
  1280. */
  1281. int
  1282. tor_inet_ntoa(const struct in_addr *in, char *buf, size_t buf_len)
  1283. {
  1284. uint32_t a = ntohl(in->s_addr);
  1285. return tor_snprintf(buf, buf_len, "%d.%d.%d.%d",
  1286. (int)(uint8_t)((a>>24)&0xff),
  1287. (int)(uint8_t)((a>>16)&0xff),
  1288. (int)(uint8_t)((a>>8 )&0xff),
  1289. (int)(uint8_t)((a )&0xff));
  1290. }
  1291. /** Given a host-order <b>addr</b>, call tor_inet_ntop() on it
  1292. * and return a strdup of the resulting address.
  1293. */
  1294. char *
  1295. tor_dup_ip(uint32_t addr)
  1296. {
  1297. char buf[TOR_ADDR_BUF_LEN];
  1298. struct in_addr in;
  1299. in.s_addr = htonl(addr);
  1300. tor_inet_ntop(AF_INET, &in, buf, sizeof(buf));
  1301. return tor_strdup(buf);
  1302. }
  1303. /**
  1304. * Set *<b>addr</b> to the host-order IPv4 address (if any) of whatever
  1305. * interface connects to the internet. This address should only be used in
  1306. * checking whether our address has changed. Return 0 on success, -1 on
  1307. * failure.
  1308. */
  1309. int
  1310. get_interface_address(int severity, uint32_t *addr)
  1311. {
  1312. tor_addr_t local_addr;
  1313. int r;
  1314. r = get_interface_address6(severity, AF_INET, &local_addr);
  1315. if (r>=0)
  1316. *addr = tor_addr_to_ipv4h(&local_addr);
  1317. return r;
  1318. }