123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776 |
- Filename: 121-hidden-service-authentication.txt
- Title: Hidden Service Authentication
- Author: Tobias Kamm, Thomas Lauterbach, Karsten Loesing, Ferdinand Rieger,
- Christoph Weingarten
- Created: 10-Sep-2007
- Status: Finished
- Implemented-In: 0.2.1.x
- Change history:
- 26-Sep-2007 Initial proposal for or-dev
- 08-Dec-2007 Incorporated comments by Nick posted to or-dev on 10-Oct-2007
- 15-Dec-2007 Rewrote complete proposal for better readability, modified
- authentication protocol, merged in personal notes
- 24-Dec-2007 Replaced misleading term "authentication" by "authorization"
- and added some clarifications (comments by Sven Kaffille)
- 28-Apr-2008 Updated most parts of the concrete authorization protocol
- 04-Jul-2008 Add a simple algorithm to delay descriptor publication for
- different clients of a hidden service
- 19-Jul-2008 Added INTRODUCE1V cell type (1.2), improved replay
- protection for INTRODUCE2 cells (1.3), described limitations
- for auth protocols (1.6), improved hidden service protocol
- without client authorization (2.1), added second, more
- scalable authorization protocol (2.2), rewrote existing
- authorization protocol (2.3); changes based on discussion
- with Nick
- 31-Jul-2008 Limit maximum descriptor size to 20 kilobytes to prevent
- abuse.
- 01-Aug-2008 Use first part of Diffie-Hellman handshake for replay
- protection instead of rendezvous cookie.
- 01-Aug-2008 Remove improved hidden service protocol without client
- authorization (2.1). It might get implemented in proposal
- 142.
- Overview:
- This proposal deals with a general infrastructure for performing
- authorization (not necessarily implying authentication) of requests to
- hidden services at three points: (1) when downloading and decrypting
- parts of the hidden service descriptor, (2) at the introduction point,
- and (3) at Bob's Tor client before contacting the rendezvous point. A
- service provider will be able to restrict access to his service at these
- three points to authorized clients only. Further, the proposal contains
- specific authorization protocols as instances that implement the
- presented authorization infrastructure.
- This proposal is based on v2 hidden service descriptors as described in
- proposal 114 and introduced in version 0.2.0.10-alpha.
- The proposal is structured as follows: The next section motivates the
- integration of authorization mechanisms in the hidden service protocol.
- Then we describe a general infrastructure for authorization in hidden
- services, followed by specific authorization protocols for this
- infrastructure. At the end we discuss a number of attacks and non-attacks
- as well as compatibility issues.
- Motivation:
- The major part of hidden services does not require client authorization
- now and won't do so in the future. To the contrary, many clients would
- not want to be (pseudonymously) identifiable by the service (though this
- is unavoidable to some extent), but rather use the service
- anonymously. These services are not addressed by this proposal.
- However, there may be certain services which are intended to be accessed
- by a limited set of clients only. A possible application might be a
- wiki or forum that should only be accessible for a closed user group.
- Another, less intuitive example might be a real-time communication
- service, where someone provides a presence and messaging service only to
- his buddies. Finally, a possible application would be a personal home
- server that should be remotely accessed by its owner.
- Performing authorization for a hidden service within the Tor network, as
- proposed here, offers a range of advantages compared to allowing all
- client connections in the first instance and deferring authorization to
- the transported protocol:
- (1) Reduced traffic: Unauthorized requests would be rejected as early as
- possible, thereby reducing the overall traffic in the network generated
- by establishing circuits and sending cells.
- (2) Better protection of service location: Unauthorized clients could not
- force Bob to create circuits to their rendezvous points, thus preventing
- the attack described by Øverlier and Syverson in their paper "Locating
- Hidden Servers" even without the need for guards.
- (3) Hiding activity: Apart from performing the actual authorization, a
- service provider could also hide the mere presence of his service from
- unauthorized clients when not providing hidden service descriptors to
- them, rejecting unauthorized requests already at the introduction
- point (ideally without leaking presence information at any of these
- points), or not answering unauthorized introduction requests.
- (4) Better protection of introduction points: When providing hidden
- service descriptors to authorized clients only and encrypting the
- introduction points as described in proposal 114, the introduction points
- would be unknown to unauthorized clients and thereby protected from DoS
- attacks.
- (5) Protocol independence: Authorization could be performed for all
- transported protocols, regardless of their own capabilities to do so.
- (6) Ease of administration: A service provider running multiple hidden
- services would be able to configure access at a single place uniformly
- instead of doing so for all services separately.
- (7) Optional QoS support: Bob could adapt his node selection algorithm
- for building the circuit to Alice's rendezvous point depending on a
- previously guaranteed QoS level, thus providing better latency or
- bandwidth for selected clients.
- A disadvantage of performing authorization within the Tor network is
- that a hidden service cannot make use of authorization data in
- the transported protocol. Tor hidden services were designed to be
- independent of the transported protocol. Therefore it's only possible to
- either grant or deny access to the whole service, but not to specific
- resources of the service.
- Authorization often implies authentication, i.e. proving one's identity.
- However, when performing authorization within the Tor network, untrusted
- points should not gain any useful information about the identities of
- communicating parties, neither server nor client. A crucial challenge is
- to remain anonymous towards directory servers and introduction points.
- However, trying to hide identity from the hidden service is a futile
- task, because a client would never know if he is the only authorized
- client and therefore perfectly identifiable. Therefore, hiding client
- identity from the hidden service is not an aim of this proposal.
- The current implementation of hidden services does not provide any kind
- of authorization. The hidden service descriptor version 2, introduced by
- proposal 114, was designed to use a descriptor cookie for downloading and
- decrypting parts of the descriptor content, but this feature is not yet
- in use. Further, most relevant cell formats specified in rend-spec
- contain fields for authorization data, but those fields are neither
- implemented nor do they suffice entirely.
- Details:
- 1. General infrastructure for authorization to hidden services
- We spotted three possible authorization points in the hidden service
- protocol:
- (1) when downloading and decrypting parts of the hidden service
- descriptor,
- (2) at the introduction point, and
- (3) at Bob's Tor client before contacting the rendezvous point.
- The general idea of this proposal is to allow service providers to
- restrict access to some or all of these points to authorized clients
- only.
- 1.1. Client authorization at directory
- Since the implementation of proposal 114 it is possible to combine a
- hidden service descriptor with a so-called descriptor cookie. If done so,
- the descriptor cookie becomes part of the descriptor ID, thus having an
- effect on the storage location of the descriptor. Someone who has learned
- about a service, but is not aware of the descriptor cookie, won't be able
- to determine the descriptor ID and download the current hidden service
- descriptor; he won't even know whether the service has uploaded a
- descriptor recently. Descriptor IDs are calculated as follows (see
- section 1.2 of rend-spec for the complete specification of v2 hidden
- service descriptors):
- descriptor-id =
- H(service-id | H(time-period | descriptor-cookie | replica))
- Currently, service-id is equivalent to permanent-id which is calculated
- as in the following formula. But in principle it could be any public
- key.
- permanent-id = H(permanent-key)[:10]
- The second purpose of the descriptor cookie is to encrypt the list of
- introduction points, including optional authorization data. Hence, the
- hidden service directories won't learn any introduction information from
- storing a hidden service descriptor. This feature is implemented but
- unused at the moment. So this proposal will harness the advantages
- of proposal 114.
- The descriptor cookie can be used for authorization by keeping it secret
- from everyone but authorized clients. A service could then decide whether
- to publish hidden service descriptors using that descriptor cookie later
- on. An authorized client being aware of the descriptor cookie would be
- able to download and decrypt the hidden service descriptor.
- The number of concurrently used descriptor cookies for one hidden service
- is not restricted. A service could use a single descriptor cookie for all
- users, a distinct cookie per user, or something in between, like one
- cookie per group of users. It is up to the specific protocol and how it
- is applied by a service provider.
- Two or more hidden service descriptors for different groups or users
- should not be uploaded at the same time. A directory node could conclude
- easily that the descriptors were issued by the same hidden service, thus
- being able to link the two groups or users. Therefore, descriptors for
- different users or clients that ought to be stored on the same directory
- are delayed, so that only one descriptor is uploaded to a directory at a
- time. The remaining descriptors are uploaded with a delay of up to
- 30 seconds.
- Further, descriptors for different groups or users that are to be stored
- on different directories are delayed for a random time of up to 30
- seconds to hide relations from colluding directories. Certainly, this
- does not prevent linking entirely, but it makes it somewhat harder.
- There is a conflict between hiding links between clients and making a
- service available in a timely manner.
- Although this part of the proposal is meant to describe a general
- infrastructure for authorization, changing the way of using the
- descriptor cookie to look up hidden service descriptors, e.g. applying
- some sort of asymmetric crypto system, would require in-depth changes
- that would be incompatible to v2 hidden service descriptors. On the
- contrary, using another key for en-/decrypting the introduction point
- part of a hidden service descriptor, e.g. a different symmetric key or
- asymmetric encryption, would be easy to implement and compatible to v2
- hidden service descriptors as understood by hidden service directories
- (clients and services would have to be upgraded anyway for using the new
- features).
- An adversary could try to abuse the fact that introduction points can be
- encrypted by storing arbitrary, unrelated data in the hidden service
- directory. This abuse can be limited by setting a hard descriptor size
- limit, forcing the adversary to split data into multiple chunks. There
- are some limitations that make splitting data across multiple descriptors
- unattractive: 1) The adversary would not be able to choose descriptor IDs
- freely and would therefore have to implement his own indexing
- structure. 2) Validity of descriptors is limited to at most 24 hours
- after which descriptors need to be republished.
- The regular descriptor size in bytes is 745 + num_ipos * 837 + auth_data.
- A large descriptor with 7 introduction points and 5 kilobytes of
- authorization data would be 11724 bytes in size. The upper size limit of
- descriptors should be set to 20 kilobytes, which limits the effect of
- abuse while retaining enough flexibility in designing authorization
- protocols.
- 1.2. Client authorization at introduction point
- The next possible authorization point after downloading and decrypting
- a hidden service descriptor is the introduction point. It may be important
- for authorization, because it bears the last chance of hiding presence
- of a hidden service from unauthorized clients. Further, performing
- authorization at the introduction point might reduce traffic in the
- network, because unauthorized requests would not be passed to the
- hidden service. This applies to those clients who are aware of a
- descriptor cookie and thereby of the hidden service descriptor, but do
- not have authorization data to pass the introduction point or access the
- service (such a situation might occur when authorization data for
- authorization at the directory is not issued on a per-user basis, but
- authorization data for authorization at the introduction point is).
- It is important to note that the introduction point must be considered
- untrustworthy, and therefore cannot replace authorization at the hidden
- service itself. Nor should the introduction point learn any sensitive
- identifiable information from either the service or the client.
- In order to perform authorization at the introduction point, three
- message formats need to be modified: (1) v2 hidden service descriptors,
- (2) ESTABLISH_INTRO cells, and (3) INTRODUCE1 cells.
- A v2 hidden service descriptor needs to contain authorization data that
- is introduction-point-specific and sometimes also authorization data
- that is introduction-point-independent. Therefore, v2 hidden service
- descriptors as specified in section 1.2 of rend-spec already contain two
- reserved fields "intro-authorization" and "service-authorization"
- (originally, the names of these fields were "...-authentication")
- containing an authorization type number and arbitrary authorization
- data. We propose that authorization data consists of base64 encoded
- objects of arbitrary length, surrounded by "-----BEGIN MESSAGE-----" and
- "-----END MESSAGE-----". This will increase the size of hidden service
- descriptors, but this is allowed since there is no strict upper limit.
- The current ESTABLISH_INTRO cells as described in section 1.3 of
- rend-spec do not contain either authorization data or version
- information. Therefore, we propose a new version 1 of the ESTABLISH_INTRO
- cells adding these two issues as follows:
- V Format byte: set to 255 [1 octet]
- V Version byte: set to 1 [1 octet]
- KL Key length [2 octets]
- PK Bob's public key [KL octets]
- HS Hash of session info [20 octets]
- AUTHT The auth type that is supported [1 octet]
- AUTHL Length of auth data [2 octets]
- AUTHD Auth data [variable]
- SIG Signature of above information [variable]
- From the format it is possible to determine the maximum allowed size for
- authorization data: given the fact that cells are 512 octets long, of
- which 498 octets are usable (see section 6.1 of tor-spec), and assuming
- 1024 bit = 128 octet long keys, there are 215 octets left for
- authorization data. Hence, authorization protocols are bound to use no
- more than these 215 octets, regardless of the number of clients that
- shall be authenticated at the introduction point. Otherwise, one would
- need to send multiple ESTABLISH_INTRO cells or split them up, which we do
- not specify here.
- In order to understand a v1 ESTABLISH_INTRO cell, the implementation of
- a relay must have a certain Tor version. Hidden services need to be able
- to distinguish relays being capable of understanding the new v1 cell
- formats and perform authorization. We propose to use the version number
- that is contained in networkstatus documents to find capable
- introduction points.
- The current INTRODUCE1 cell as described in section 1.8 of rend-spec is
- not designed to carry authorization data and has no version number, too.
- Unfortunately, unversioned INTRODUCE1 cells consist only of a fixed-size,
- seemingly random PK_ID, followed by the encrypted INTRODUCE2 cell. This
- makes it impossible to distinguish unversioned INTRODUCE1 cells from any
- later format. In particular, it is not possible to introduce some kind of
- format and version byte for newer versions of this cell. That's probably
- where the comment "[XXX011 want to put intro-level auth info here, but no
- version. crap. -RD]" that was part of rend-spec some time ago comes from.
- We propose that new versioned INTRODUCE1 cells use the new cell type 41
- RELAY_INTRODUCE1V (where V stands for versioned):
- Cleartext
- V Version byte: set to 1 [1 octet]
- PK_ID Identifier for Bob's PK [20 octets]
- AUTHT The auth type that is included [1 octet]
- AUTHL Length of auth data [2 octets]
- AUTHD Auth data [variable]
- Encrypted to Bob's PK:
- (RELAY_INTRODUCE2 cell)
- The maximum length of contained authorization data depends on the length
- of the contained INTRODUCE2 cell. A calculation follows below when
- describing the INTRODUCE2 cell format we propose to use.
- 1.3. Client authorization at hidden service
- The time when a hidden service receives an INTRODUCE2 cell constitutes
- the last possible authorization point during the hidden service
- protocol. Performing authorization here is easier than at the other two
- authorization points, because there are no possibly untrusted entities
- involved.
- In general, a client that is successfully authorized at the introduction
- point should be granted access at the hidden service, too. Otherwise, the
- client would receive a positive INTRODUCE_ACK cell from the introduction
- point and conclude that it may connect to the service, but the request
- will be dropped without notice. This would appear as a failure to
- clients. Therefore, the number of cases in which a client successfully
- passes the introduction point but fails at the hidden service should be
- zero. However, this does not lead to the conclusion that the
- authorization data used at the introduction point and the hidden service
- must be the same, but only that both authorization data should lead to
- the same authorization result.
- Authorization data is transmitted from client to server via an
- INTRODUCE2 cell that is forwarded by the introduction point. There are
- versions 0 to 2 specified in section 1.8 of rend-spec, but none of these
- contain fields for carrying authorization data. We propose a slightly
- modified version of v3 INTRODUCE2 cells that is specified in section
- 1.8.1 and which is not implemented as of December 2007. In contrast to
- the specified v3 we avoid specifying (and implementing) IPv6 capabilities,
- because Tor relays will be required to support IPv4 addresses for a long
- time in the future, so that this seems unnecessary at the moment. The
- proposed format of v3 INTRODUCE2 cells is as follows:
- VER Version byte: set to 3. [1 octet]
- AUTHT The auth type that is used [1 octet]
- AUTHL Length of auth data [2 octets]
- AUTHD Auth data [variable]
- TS Timestamp (seconds since 1-1-1970) [4 octets]
- IP Rendezvous point's address [4 octets]
- PORT Rendezvous point's OR port [2 octets]
- ID Rendezvous point identity ID [20 octets]
- KLEN Length of onion key [2 octets]
- KEY Rendezvous point onion key [KLEN octets]
- RC Rendezvous cookie [20 octets]
- g^x Diffie-Hellman data, part 1 [128 octets]
- The maximum possible length of authorization data is related to the
- enclosing INTRODUCE1V cell. A v3 INTRODUCE2 cell with
- 1024 bit = 128 octets long public key without any authorization data
- occupies 306 octets (AUTHL is only used when AUTHT has a value != 0),
- plus 58 octets for hybrid public key encryption (see
- section 5.1 of tor-spec on hybrid encryption of CREATE cells). The
- surrounding INTRODUCE1V cell requires 24 octets. This leaves only 110
- of the 498 available octets free, which must be shared between
- authorization data to the introduction point _and_ to the hidden
- service.
- When receiving a v3 INTRODUCE2 cell, Bob checks whether a client has
- provided valid authorization data to him. He also requires that the
- timestamp is no more than 30 minutes in the past or future and that the
- first part of the Diffie-Hellman handshake has not been used in the past
- 60 minutes to prevent replay attacks by rogue introduction points. (The
- reason for not using the rendezvous cookie to detect replays---even
- though it is only sent once in the current design---is that it might be
- desirable to re-use rendezvous cookies for multiple introduction requests
- in the future.) If all checks pass, Bob builds a circuit to the provided
- rendezvous point. Otherwise he drops the cell.
- 1.4. Summary of authorization data fields
- In summary, the proposed descriptor format and cell formats provide the
- following fields for carrying authorization data:
- (1) The v2 hidden service descriptor contains:
- - a descriptor cookie that is used for the lookup process, and
- - an arbitrary encryption schema to ensure authorization to access
- introduction information (currently symmetric encryption with the
- descriptor cookie).
- (2) For performing authorization at the introduction point we can use:
- - the fields intro-authorization and service-authorization in
- hidden service descriptors,
- - a maximum of 215 octets in the ESTABLISH_INTRO cell, and
- - one part of 110 octets in the INTRODUCE1V cell.
- (3) For performing authorization at the hidden service we can use:
- - the fields intro-authorization and service-authorization in
- hidden service descriptors,
- - the other part of 110 octets in the INTRODUCE2 cell.
- It will also still be possible to access a hidden service without any
- authorization or only use a part of the authorization infrastructure.
- However, this requires to consider all parts of the infrastructure. For
- example, authorization at the introduction point relying on confidential
- intro-authorization data transported in the hidden service descriptor
- cannot be performed without using an encryption schema for introduction
- information.
- 1.5. Managing authorization data at servers and clients
- In order to provide authorization data at the hidden service and the
- authenticated clients, we propose to use files---either the Tor
- configuration file or separate files. The exact format of these special
- files depends on the authorization protocol used.
- Currently, rend-spec contains the proposition to encode client-side
- authorization data in the URL, like in x.y.z.onion. This was never used
- and is also a bad idea, because in case of HTTP the requested URL may be
- contained in the Host and Referer fields.
- 1.6. Limitations for authorization protocols
- There are two limitations of the current hidden service protocol for
- authorization protocols that shall be identified here.
- 1. The three cell types ESTABLISH_INTRO, INTRODUCE1V, and INTRODUCE2
- restricts the amount of data that can be used for authorization.
- This forces authorization protocols that require per-user
- authorization data at the introduction point to restrict the number
- of authorized clients artificially. A possible solution could be to
- split contents among multiple cells and reassemble them at the
- introduction points.
- 2. The current hidden service protocol does not specify cell types to
- perform interactive authorization between client and introduction
- point or hidden service. If there should be an authorization
- protocol that requires interaction, new cell types would have to be
- defined and integrated into the hidden service protocol.
- 2. Specific authorization protocol instances
- In the following we present two specific authorization protocols that
- make use of (parts of) the new authorization infrastructure:
- 1. The first protocol allows a service provider to restrict access
- to clients with a previously received secret key only, but does not
- attempt to hide service activity from others.
- 2. The second protocol, albeit being feasible for a limited set of about
- 16 clients, performs client authorization and hides service activity
- from everyone but the authorized clients.
- These two protocol instances extend the existing hidden service protocol
- version 2. Hidden services that perform client authorization may run in
- parallel to other services running versions 0, 2, or both.
- 2.1. Service with large-scale client authorization
- The first client authorization protocol aims at performing access control
- while consuming as few additional resources as possible. A service
- provider should be able to permit access to a large number of clients
- while denying access for everyone else. However, the price for
- scalability is that the service won't be able to hide its activity from
- unauthorized or formerly authorized clients.
- The main idea of this protocol is to encrypt the introduction-point part
- in hidden service descriptors to authorized clients using symmetric keys.
- This ensures that nobody else but authorized clients can learn which
- introduction points a service currently uses, nor can someone send a
- valid INTRODUCE1 message without knowing the introduction key. Therefore,
- a subsequent authorization at the introduction point is not required.
- A service provider generates symmetric "descriptor cookies" for his
- clients and distributes them outside of Tor. The suggested key size is
- 128 bits, so that descriptor cookies can be encoded in 22 base64 chars
- (which can hold up to 22 * 5 = 132 bits, leaving 4 bits to encode the
- authorization type (here: "0") and allow a client to distinguish this
- authorization protocol from others like the one proposed below).
- Typically, the contact information for a hidden service using this
- authorization protocol looks like this:
- v2cbb2l4lsnpio4q.onion Ll3X7Xgz9eHGKCCnlFH0uz
- When generating a hidden service descriptor, the service encrypts the
- introduction-point part with a single randomly generated symmetric
- 128-bit session key using AES-CTR as described for v2 hidden service
- descriptors in rend-spec. Afterwards, the service encrypts the session
- key to all descriptor cookies using AES. Authorized client should be able
- to efficiently find the session key that is encrypted for him/her, so
- that 4 octet long client ID are generated consisting of descriptor cookie
- and initialization vector. Descriptors always contain a number of
- encrypted session keys that is a multiple of 16 by adding fake entries.
- Encrypted session keys are ordered by client IDs in order to conceal
- addition or removal of authorized clients by the service provider.
- ATYPE Authorization type: set to 1. [1 octet]
- ALEN Number of clients := 1 + ((clients - 1) div 16) [1 octet]
- for each symmetric descriptor cookie:
- ID Client ID: H(descriptor cookie | IV)[:4] [4 octets]
- SKEY Session key encrypted with descriptor cookie [16 octets]
- (end of client-specific part)
- RND Random data [(15 - ((clients - 1) mod 16)) * 20 octets]
- IV AES initialization vector [16 octets]
- IPOS Intro points, encrypted with session key [remaining octets]
- An authorized client needs to configure Tor to use the descriptor cookie
- when accessing the hidden service. Therefore, a user adds the contact
- information that she received from the service provider to her torrc
- file. Upon downloading a hidden service descriptor, Tor finds the
- encrypted introduction-point part and attempts to decrypt it using the
- configured descriptor cookie. (In the rare event of two or more client
- IDs being equal a client tries to decrypt all of them.)
- Upon sending the introduction, the client includes her descriptor cookie
- as auth type "1" in the INTRODUCE2 cell that she sends to the service.
- The hidden service checks whether the included descriptor cookie is
- authorized to access the service and either responds to the introduction
- request, or not.
- 2.2. Authorization for limited number of clients
- A second, more sophisticated client authorization protocol goes the extra
- mile of hiding service activity from unauthorized clients. With all else
- being equal to the preceding authorization protocol, the second protocol
- publishes hidden service descriptors for each user separately and gets
- along with encrypting the introduction-point part of descriptors to a
- single client. This allows the service to stop publishing descriptors for
- removed clients. As long as a removed client cannot link descriptors
- issued for other clients to the service, it cannot derive service
- activity any more. The downside of this approach is limited scalability.
- Even though the distributed storage of descriptors (cf. proposal 114)
- tackles the problem of limited scalability to a certain extent, this
- protocol should not be used for services with more than 16 clients. (In
- fact, Tor should refuse to advertise services for more than this number
- of clients.)
- A hidden service generates an asymmetric "client key" and a symmetric
- "descriptor cookie" for each client. The client key is used as
- replacement for the service's permanent key, so that the service uses a
- different identity for each of his clients. The descriptor cookie is used
- to store descriptors at changing directory nodes that are unpredictable
- for anyone but service and client, to encrypt the introduction-point
- part, and to be included in INTRODUCE2 cells. Once the service has
- created client key and descriptor cookie, he tells them to the client
- outside of Tor. The contact information string looks similar to the one
- used by the preceding authorization protocol (with the only difference
- that it has "1" encoded as auth-type in the remaining 4 of 132 bits
- instead of "0" as before).
- When creating a hidden service descriptor for an authorized client, the
- hidden service uses the client key and descriptor cookie to compute
- secret ID part and descriptor ID:
- secret-id-part = H(time-period | descriptor-cookie | replica)
- descriptor-id = H(client-key[:10] | secret-id-part)
- The hidden service also replaces permanent-key in the descriptor with
- client-key and encrypts introduction-points with the descriptor cookie.
- ATYPE Authorization type: set to 2. [1 octet]
- IV AES initialization vector [16 octets]
- IPOS Intro points, encr. with descriptor cookie [remaining octets]
- When uploading descriptors, the hidden service needs to make sure that
- descriptors for different clients are not uploaded at the same time (cf.
- Section 1.1) which is also a limiting factor for the number of clients.
- When a client is requested to establish a connection to a hidden service
- it looks up whether it has any authorization data configured for that
- service. If the user has configured authorization data for authorization
- protocol "2", the descriptor ID is determined as described in the last
- paragraph. Upon receiving a descriptor, the client decrypts the
- introduction-point part using its descriptor cookie. Further, the client
- includes its descriptor cookie as auth-type "2" in INTRODUCE2 cells that
- it sends to the service.
- 2.3. Hidden service configuration
- A hidden service that is meant to perform client authorization adds a
- new option HiddenServiceAuthorizeClient to its hidden service
- configuration. This option contains the authorization type which is
- either "1" for the protocol described in 2.1 or "2" for the protocol in
- 2.2 and a comma-separated list of human-readable client names, so that
- Tor can create authorization data for these clients:
- HiddenServiceAuthorizeClient auth-type client-name,client-name,...
- If this option is configured, HiddenServiceVersion is automatically
- reconfigured to contain only version numbers of 2 or higher.
- Tor stores all generated authorization data for the authorization
- protocols described in Sections 2.1 and 2.2 in a new file using the
- following file format:
- "client-name" human-readable client identifier NL
- "descriptor-cookie" 128-bit key ^= 22 base64 chars NL
- If the authorization protocol of Section 2.2 is used, Tor also generates
- and stores the following data:
- "client-key" NL a public key in PEM format
- 2.4. Client configuration
- Clients need to make their authorization data known to Tor using another
- configuration option that contains a service name (mainly for the sake of
- convenience), the service address, and the descriptor cookie that is
- required to access a hidden service (the authorization protocol number is
- encoded in the descriptor cookie):
- HidServAuth service-name service-address descriptor-cookie
- Security implications:
- In the following we want to discuss possible attacks by dishonest
- entities in the presented infrastructure and specific protocol. These
- security implications would have to be verified once more when adding
- another protocol. The dishonest entities (theoretically) include the
- hidden service itself, the authenticated clients, hidden service directory
- nodes, introduction points, and rendezvous points. The relays that are
- part of circuits used during protocol execution, but never learn about
- the exchanged descriptors or cells by design, are not considered.
- Obviously, this list makes no claim to be complete. The discussed attacks
- are sorted by the difficulty to perform them, in ascending order,
- starting with roles that everyone could attempt to take and ending with
- partially trusted entities abusing the trust put in them.
- (1) A hidden service directory could attempt to conclude presence of a
- service from the existence of a locally stored hidden service descriptor:
- This passive attack is possible only for a single client-service
- relation, because descriptors need to contain a publicly visible
- signature of the service using the client key.
- A possible protection would be to increase the number of hidden service
- directories in the network.
- (2) A hidden service directory could try to break the descriptor cookies
- of locally stored descriptors: This attack can be performed offline. The
- only useful countermeasure against it might be using safe passwords that
- are generated by Tor.
- [passwords? where did those come in? -RD]
- (3) An introduction point could try to identify the pseudonym of the
- hidden service on behalf of which it operates: This is impossible by
- design, because the service uses a fresh public key for every
- establishment of an introduction point (see proposal 114) and the
- introduction point receives a fresh introduction cookie, so that there is
- no identifiable information about the service that the introduction point
- could learn. The introduction point cannot even tell if client accesses
- belong to the same client or not, nor can it know the total number of
- authorized clients. The only information might be the pattern of
- anonymous client accesses, but that is hardly enough to reliably identify
- a specific service.
- (4) An introduction point could want to learn the identities of accessing
- clients: This is also impossible by design, because all clients use the
- same introduction cookie for authorization at the introduction point.
- (5) An introduction point could try to replay a correct INTRODUCE1 cell
- to other introduction points of the same service, e.g. in order to force
- the service to create a huge number of useless circuits: This attack is
- not possible by design, because INTRODUCE1 cells are encrypted using a
- freshly created introduction key that is only known to authorized
- clients.
- (6) An introduction point could attempt to replay a correct INTRODUCE2
- cell to the hidden service, e.g. for the same reason as in the last
- attack: This attack is stopped by the fact that a service will drop
- INTRODUCE2 cells containing a DH handshake they have seen recently.
- (7) An introduction point could block client requests by sending either
- positive or negative INTRODUCE_ACK cells back to the client, but without
- forwarding INTRODUCE2 cells to the server: This attack is an annoyance
- for clients, because they might wait for a timeout to elapse until trying
- another introduction point. However, this attack is not introduced by
- performing authorization and it cannot be targeted towards a specific
- client. A countermeasure might be for the server to periodically perform
- introduction requests to his own service to see if introduction points
- are working correctly.
- (8) The rendezvous point could attempt to identify either server or
- client: This remains impossible as it was before, because the
- rendezvous cookie does not contain any identifiable information.
- (9) An authenticated client could swamp the server with valid INTRODUCE1
- and INTRODUCE2 cells, e.g. in order to force the service to create
- useless circuits to rendezvous points; as opposed to an introduction
- point replaying the same INTRODUCE2 cell, a client could include a new
- rendezvous cookie for every request: The countermeasure for this attack
- is the restriction to 10 connection establishments per client per hour.
- Compatibility:
- An implementation of this proposal would require changes to hidden
- services and clients to process authorization data and encode and
- understand the new formats. However, both services and clients would
- remain compatible to regular hidden services without authorization.
- Implementation:
- The implementation of this proposal can be divided into a number of
- changes to hidden service and client side. There are no
- changes necessary on directory, introduction, or rendezvous nodes. All
- changes are marked with either [service] or [client] do denote on which
- side they need to be made.
- /1/ Configure client authorization [service]
- - Parse configuration option HiddenServiceAuthorizeClient containing
- authorized client names.
- - Load previously created client keys and descriptor cookies.
- - Generate missing client keys and descriptor cookies, add them to
- client_keys file.
- - Rewrite the hostname file.
- - Keep client keys and descriptor cookies of authorized clients in
- memory.
- [- In case of reconfiguration, mark which client authorizations were
- added and whether any were removed. This can be used later when
- deciding whether to rebuild introduction points and publish new
- hidden service descriptors. Not implemented yet.]
- /2/ Publish hidden service descriptors [service]
- - Create and upload hidden service descriptors for all authorized
- clients.
- [- See /1/ for the case of reconfiguration.]
- /3/ Configure permission for hidden services [client]
- - Parse configuration option HidServAuth containing service
- authorization, store authorization data in memory.
- /5/ Fetch hidden service descriptors [client]
- - Look up client authorization upon receiving a hidden service request.
- - Request hidden service descriptor ID including client key and
- descriptor cookie. Only request v2 descriptors, no v0.
- /6/ Process hidden service descriptor [client]
- - Decrypt introduction points with descriptor cookie.
- /7/ Create introduction request [client]
- - Include descriptor cookie in INTRODUCE2 cell to introduction point.
- - Pass descriptor cookie around between involved connections and
- circuits.
- /8/ Process introduction request [service]
- - Read descriptor cookie from INTRODUCE2 cell.
- - Check whether descriptor cookie is authorized for access, including
- checking access counters.
- - Log access for accountability.
|