address.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. /* Copyright (c) 2003-2004, Roger Dingledine
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2013, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. /**
  6. * \file address.c
  7. * \brief Functions to use and manipulate the tor_addr_t structure.
  8. **/
  9. #include "orconfig.h"
  10. #include "compat.h"
  11. #include "util.h"
  12. #include "address.h"
  13. #include "torlog.h"
  14. #include "container.h"
  15. #include "sandbox.h"
  16. #ifdef _WIN32
  17. #include <process.h>
  18. #include <windows.h>
  19. #include <winsock2.h>
  20. /* For access to structs needed by GetAdaptersAddresses */
  21. #undef _WIN32_WINNT
  22. #define _WIN32_WINNT 0x0501
  23. #include <iphlpapi.h>
  24. #endif
  25. #ifdef HAVE_SYS_TIME_H
  26. #include <sys/time.h>
  27. #endif
  28. #ifdef HAVE_UNISTD_H
  29. #include <unistd.h>
  30. #endif
  31. #ifdef HAVE_ERRNO_H
  32. #include <errno.h>
  33. #endif
  34. #ifdef HAVE_NETINET_IN_H
  35. #include <netinet/in.h>
  36. #endif
  37. #ifdef HAVE_ARPA_INET_H
  38. #include <arpa/inet.h>
  39. #endif
  40. #ifdef HAVE_SYS_SOCKET_H
  41. #include <sys/socket.h>
  42. #endif
  43. #ifdef HAVE_NETDB_H
  44. #include <netdb.h>
  45. #endif
  46. #ifdef HAVE_SYS_PARAM_H
  47. #include <sys/param.h> /* FreeBSD needs this to know what version it is */
  48. #endif
  49. #ifdef HAVE_SYS_UN_H
  50. #include <sys/un.h>
  51. #endif
  52. #ifdef HAVE_IFADDRS_H
  53. #include <ifaddrs.h>
  54. #endif
  55. #ifdef HAVE_SYS_IOCTL_H
  56. #include <sys/ioctl.h>
  57. #endif
  58. #ifdef HAVE_NET_IF_H
  59. #include <net/if.h>
  60. #endif
  61. #include <stdarg.h>
  62. #include <stdio.h>
  63. #include <stdlib.h>
  64. #include <string.h>
  65. #include <assert.h>
  66. /* tor_addr_is_null() and maybe other functions rely on AF_UNSPEC being 0 to
  67. * work correctly. Bail out here if we've found a platform where AF_UNSPEC
  68. * isn't 0. */
  69. #if AF_UNSPEC != 0
  70. #error We rely on AF_UNSPEC being 0. Let us know about your platform, please!
  71. #endif
  72. /** Convert the tor_addr_t in <b>a</b>, with port in <b>port</b>, into a
  73. * sockaddr object in *<b>sa_out</b> of object size <b>len</b>. If not enough
  74. * room is available in sa_out, or on error, return 0. On success, return
  75. * the length of the sockaddr.
  76. *
  77. * Interface note: ordinarily, we return -1 for error. We can't do that here,
  78. * since socklen_t is unsigned on some platforms.
  79. **/
  80. socklen_t
  81. tor_addr_to_sockaddr(const tor_addr_t *a,
  82. uint16_t port,
  83. struct sockaddr *sa_out,
  84. socklen_t len)
  85. {
  86. sa_family_t family = tor_addr_family(a);
  87. if (family == AF_INET) {
  88. struct sockaddr_in *sin;
  89. if (len < (int)sizeof(struct sockaddr_in))
  90. return 0;
  91. sin = (struct sockaddr_in *)sa_out;
  92. memset(sin, 0, sizeof(struct sockaddr_in));
  93. #ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
  94. sin->sin_len = sizeof(struct sockaddr_in);
  95. #endif
  96. sin->sin_family = AF_INET;
  97. sin->sin_port = htons(port);
  98. sin->sin_addr.s_addr = tor_addr_to_ipv4n(a);
  99. return sizeof(struct sockaddr_in);
  100. } else if (family == AF_INET6) {
  101. struct sockaddr_in6 *sin6;
  102. if (len < (int)sizeof(struct sockaddr_in6))
  103. return 0;
  104. sin6 = (struct sockaddr_in6 *)sa_out;
  105. memset(sin6, 0, sizeof(struct sockaddr_in6));
  106. #ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
  107. sin6->sin6_len = sizeof(struct sockaddr_in6);
  108. #endif
  109. sin6->sin6_family = AF_INET6;
  110. sin6->sin6_port = htons(port);
  111. memcpy(&sin6->sin6_addr, tor_addr_to_in6(a), sizeof(struct in6_addr));
  112. return sizeof(struct sockaddr_in6);
  113. } else {
  114. return 0;
  115. }
  116. }
  117. /** Set the tor_addr_t in <b>a</b> to contain the socket address contained in
  118. * <b>sa</b>. */
  119. int
  120. tor_addr_from_sockaddr(tor_addr_t *a, const struct sockaddr *sa,
  121. uint16_t *port_out)
  122. {
  123. tor_assert(a);
  124. tor_assert(sa);
  125. if (sa->sa_family == AF_INET) {
  126. struct sockaddr_in *sin = (struct sockaddr_in *) sa;
  127. tor_addr_from_ipv4n(a, sin->sin_addr.s_addr);
  128. if (port_out)
  129. *port_out = ntohs(sin->sin_port);
  130. } else if (sa->sa_family == AF_INET6) {
  131. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa;
  132. tor_addr_from_in6(a, &sin6->sin6_addr);
  133. if (port_out)
  134. *port_out = ntohs(sin6->sin6_port);
  135. } else {
  136. tor_addr_make_unspec(a);
  137. return -1;
  138. }
  139. return 0;
  140. }
  141. /** Return a newly allocated string holding the address described in
  142. * <b>sa</b>. AF_UNIX, AF_UNSPEC, AF_INET, and AF_INET6 are supported. */
  143. char *
  144. tor_sockaddr_to_str(const struct sockaddr *sa)
  145. {
  146. char address[TOR_ADDR_BUF_LEN];
  147. char *result;
  148. tor_addr_t addr;
  149. uint16_t port;
  150. #ifdef HAVE_SYS_UN_H
  151. if (sa->sa_family == AF_UNIX) {
  152. struct sockaddr_un *s_un = (struct sockaddr_un *)sa;
  153. tor_asprintf(&result, "unix:%s", s_un->sun_path);
  154. return result;
  155. }
  156. #endif
  157. if (sa->sa_family == AF_UNSPEC)
  158. return tor_strdup("unspec");
  159. if (tor_addr_from_sockaddr(&addr, sa, &port) < 0)
  160. return NULL;
  161. if (! tor_addr_to_str(address, &addr, sizeof(address), 1))
  162. return NULL;
  163. tor_asprintf(&result, "%s:%d", address, (int)port);
  164. return result;
  165. }
  166. /** Set address <b>a</b> to the unspecified address. This address belongs to
  167. * no family. */
  168. void
  169. tor_addr_make_unspec(tor_addr_t *a)
  170. {
  171. memset(a, 0, sizeof(*a));
  172. a->family = AF_UNSPEC;
  173. }
  174. /** Set address <a>a</b> to the null address in address family <b>family</b>.
  175. * The null address for AF_INET is 0.0.0.0. The null address for AF_INET6 is
  176. * [::]. AF_UNSPEC is all null. */
  177. void
  178. tor_addr_make_null(tor_addr_t *a, sa_family_t family)
  179. {
  180. memset(a, 0, sizeof(*a));
  181. a->family = family;
  182. }
  183. /** Similar behavior to Unix gethostbyname: resolve <b>name</b>, and set
  184. * *<b>addr</b> to the proper IP address and family. The <b>family</b>
  185. * argument (which must be AF_INET, AF_INET6, or AF_UNSPEC) declares a
  186. * <i>preferred</i> family, though another one may be returned if only one
  187. * family is implemented for this address.
  188. *
  189. * Return 0 on success, -1 on failure; 1 on transient failure.
  190. */
  191. int
  192. tor_addr_lookup(const char *name, uint16_t family, tor_addr_t *addr)
  193. {
  194. /* Perhaps eventually this should be replaced by a tor_getaddrinfo or
  195. * something.
  196. */
  197. struct in_addr iaddr;
  198. struct in6_addr iaddr6;
  199. tor_assert(name);
  200. tor_assert(addr);
  201. tor_assert(family == AF_INET || family == AF_INET6 || family == AF_UNSPEC);
  202. if (!*name) {
  203. /* Empty address is an error. */
  204. return -1;
  205. } else if (tor_inet_pton(AF_INET, name, &iaddr)) {
  206. /* It's an IPv4 IP. */
  207. if (family == AF_INET6)
  208. return -1;
  209. tor_addr_from_in(addr, &iaddr);
  210. return 0;
  211. } else if (tor_inet_pton(AF_INET6, name, &iaddr6)) {
  212. if (family == AF_INET)
  213. return -1;
  214. tor_addr_from_in6(addr, &iaddr6);
  215. return 0;
  216. } else {
  217. #ifdef HAVE_GETADDRINFO
  218. int err;
  219. struct addrinfo *res=NULL, *res_p;
  220. struct addrinfo *best=NULL;
  221. struct addrinfo hints;
  222. int result = -1;
  223. memset(&hints, 0, sizeof(hints));
  224. hints.ai_family = family;
  225. hints.ai_socktype = SOCK_STREAM;
  226. err = sandbox_getaddrinfo(name, NULL, &hints, &res);
  227. if (!err) {
  228. best = NULL;
  229. for (res_p = res; res_p; res_p = res_p->ai_next) {
  230. if (family == AF_UNSPEC) {
  231. if (res_p->ai_family == AF_INET) {
  232. best = res_p;
  233. break;
  234. } else if (res_p->ai_family == AF_INET6 && !best) {
  235. best = res_p;
  236. }
  237. } else if (family == res_p->ai_family) {
  238. best = res_p;
  239. break;
  240. }
  241. }
  242. if (!best)
  243. best = res;
  244. if (best->ai_family == AF_INET) {
  245. tor_addr_from_in(addr,
  246. &((struct sockaddr_in*)best->ai_addr)->sin_addr);
  247. result = 0;
  248. } else if (best->ai_family == AF_INET6) {
  249. tor_addr_from_in6(addr,
  250. &((struct sockaddr_in6*)best->ai_addr)->sin6_addr);
  251. result = 0;
  252. }
  253. freeaddrinfo(res);
  254. return result;
  255. }
  256. return (err == EAI_AGAIN) ? 1 : -1;
  257. #else
  258. struct hostent *ent;
  259. int err;
  260. #ifdef HAVE_GETHOSTBYNAME_R_6_ARG
  261. char buf[2048];
  262. struct hostent hostent;
  263. int r;
  264. r = gethostbyname_r(name, &hostent, buf, sizeof(buf), &ent, &err);
  265. #elif defined(HAVE_GETHOSTBYNAME_R_5_ARG)
  266. char buf[2048];
  267. struct hostent hostent;
  268. ent = gethostbyname_r(name, &hostent, buf, sizeof(buf), &err);
  269. #elif defined(HAVE_GETHOSTBYNAME_R_3_ARG)
  270. struct hostent_data data;
  271. struct hostent hent;
  272. memset(&data, 0, sizeof(data));
  273. err = gethostbyname_r(name, &hent, &data);
  274. ent = err ? NULL : &hent;
  275. #else
  276. ent = gethostbyname(name);
  277. #ifdef _WIN32
  278. err = WSAGetLastError();
  279. #else
  280. err = h_errno;
  281. #endif
  282. #endif /* endif HAVE_GETHOSTBYNAME_R_6_ARG. */
  283. if (ent) {
  284. if (ent->h_addrtype == AF_INET) {
  285. tor_addr_from_in(addr, (struct in_addr*) ent->h_addr);
  286. } else if (ent->h_addrtype == AF_INET6) {
  287. tor_addr_from_in6(addr, (struct in6_addr*) ent->h_addr);
  288. } else {
  289. tor_assert(0); /* gethostbyname() returned a bizarre addrtype */
  290. }
  291. return 0;
  292. }
  293. #ifdef _WIN32
  294. return (err == WSATRY_AGAIN) ? 1 : -1;
  295. #else
  296. return (err == TRY_AGAIN) ? 1 : -1;
  297. #endif
  298. #endif
  299. }
  300. }
  301. /** Return true iff <b>ip</b> is an IP reserved to localhost or local networks
  302. * in RFC1918 or RFC4193 or RFC4291. (fec0::/10, deprecated by RFC3879, is
  303. * also treated as internal for now.)
  304. */
  305. int
  306. tor_addr_is_internal_(const tor_addr_t *addr, int for_listening,
  307. const char *filename, int lineno)
  308. {
  309. uint32_t iph4 = 0;
  310. uint32_t iph6[4];
  311. sa_family_t v_family;
  312. v_family = tor_addr_family(addr);
  313. if (v_family == AF_INET) {
  314. iph4 = tor_addr_to_ipv4h(addr);
  315. } else if (v_family == AF_INET6) {
  316. if (tor_addr_is_v4(addr)) { /* v4-mapped */
  317. v_family = AF_INET;
  318. iph4 = ntohl(tor_addr_to_in6_addr32(addr)[3]);
  319. }
  320. }
  321. if (v_family == AF_INET6) {
  322. const uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  323. iph6[0] = ntohl(a32[0]);
  324. iph6[1] = ntohl(a32[1]);
  325. iph6[2] = ntohl(a32[2]);
  326. iph6[3] = ntohl(a32[3]);
  327. if (for_listening && !iph6[0] && !iph6[1] && !iph6[2] && !iph6[3]) /* :: */
  328. return 0;
  329. if (((iph6[0] & 0xfe000000) == 0xfc000000) || /* fc00/7 - RFC4193 */
  330. ((iph6[0] & 0xffc00000) == 0xfe800000) || /* fe80/10 - RFC4291 */
  331. ((iph6[0] & 0xffc00000) == 0xfec00000)) /* fec0/10 D- RFC3879 */
  332. return 1;
  333. if (!iph6[0] && !iph6[1] && !iph6[2] &&
  334. ((iph6[3] & 0xfffffffe) == 0x00000000)) /* ::/127 */
  335. return 1;
  336. return 0;
  337. } else if (v_family == AF_INET) {
  338. if (for_listening && !iph4) /* special case for binding to 0.0.0.0 */
  339. return 0;
  340. if (((iph4 & 0xff000000) == 0x0a000000) || /* 10/8 */
  341. ((iph4 & 0xff000000) == 0x00000000) || /* 0/8 */
  342. ((iph4 & 0xff000000) == 0x7f000000) || /* 127/8 */
  343. ((iph4 & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */
  344. ((iph4 & 0xfff00000) == 0xac100000) || /* 172.16/12 */
  345. ((iph4 & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */
  346. return 1;
  347. return 0;
  348. }
  349. /* unknown address family... assume it's not safe for external use */
  350. /* rather than tor_assert(0) */
  351. log_warn(LD_BUG, "tor_addr_is_internal() called from %s:%d with a "
  352. "non-IP address of type %d", filename, lineno, (int)v_family);
  353. tor_fragile_assert();
  354. return 1;
  355. }
  356. /** Convert a tor_addr_t <b>addr</b> into a string, and store it in
  357. * <b>dest</b> of size <b>len</b>. Returns a pointer to dest on success,
  358. * or NULL on failure. If <b>decorate</b>, surround IPv6 addresses with
  359. * brackets.
  360. */
  361. const char *
  362. tor_addr_to_str(char *dest, const tor_addr_t *addr, size_t len, int decorate)
  363. {
  364. const char *ptr;
  365. tor_assert(addr && dest);
  366. switch (tor_addr_family(addr)) {
  367. case AF_INET:
  368. /* Shortest addr x.x.x.x + \0 */
  369. if (len < 8)
  370. return NULL;
  371. ptr = tor_inet_ntop(AF_INET, &addr->addr.in_addr, dest, len);
  372. break;
  373. case AF_INET6:
  374. /* Shortest addr [ :: ] + \0 */
  375. if (len < (3 + (decorate ? 2 : 0)))
  376. return NULL;
  377. if (decorate)
  378. ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest+1, len-2);
  379. else
  380. ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest, len);
  381. if (ptr && decorate) {
  382. *dest = '[';
  383. memcpy(dest+strlen(dest), "]", 2);
  384. tor_assert(ptr == dest+1);
  385. ptr = dest;
  386. }
  387. break;
  388. default:
  389. return NULL;
  390. }
  391. return ptr;
  392. }
  393. /** Parse an .in-addr.arpa or .ip6.arpa address from <b>address</b>. Return 0
  394. * if this is not an .in-addr.arpa address or an .ip6.arpa address. Return -1
  395. * if this is an ill-formed .in-addr.arpa address or an .ip6.arpa address.
  396. * Also return -1 if <b>family</b> is not AF_UNSPEC, and the parsed address
  397. * family does not match <b>family</b>. On success, return 1, and store the
  398. * result, if any, into <b>result</b>, if provided.
  399. *
  400. * If <b>accept_regular</b> is set and the address is in neither recognized
  401. * reverse lookup hostname format, try parsing the address as a regular
  402. * IPv4 or IPv6 address too.
  403. */
  404. int
  405. tor_addr_parse_PTR_name(tor_addr_t *result, const char *address,
  406. int family, int accept_regular)
  407. {
  408. if (!strcasecmpend(address, ".in-addr.arpa")) {
  409. /* We have an in-addr.arpa address. */
  410. char buf[INET_NTOA_BUF_LEN];
  411. size_t len;
  412. struct in_addr inaddr;
  413. if (family == AF_INET6)
  414. return -1;
  415. len = strlen(address) - strlen(".in-addr.arpa");
  416. if (len >= INET_NTOA_BUF_LEN)
  417. return -1; /* Too long. */
  418. memcpy(buf, address, len);
  419. buf[len] = '\0';
  420. if (tor_inet_aton(buf, &inaddr) == 0)
  421. return -1; /* malformed. */
  422. /* reverse the bytes */
  423. inaddr.s_addr = (uint32_t)
  424. (((inaddr.s_addr & 0x000000ff) << 24)
  425. |((inaddr.s_addr & 0x0000ff00) << 8)
  426. |((inaddr.s_addr & 0x00ff0000) >> 8)
  427. |((inaddr.s_addr & 0xff000000) >> 24));
  428. if (result) {
  429. tor_addr_from_in(result, &inaddr);
  430. }
  431. return 1;
  432. }
  433. if (!strcasecmpend(address, ".ip6.arpa")) {
  434. const char *cp;
  435. int i;
  436. int n0, n1;
  437. struct in6_addr in6;
  438. if (family == AF_INET)
  439. return -1;
  440. cp = address;
  441. for (i = 0; i < 16; ++i) {
  442. n0 = hex_decode_digit(*cp++); /* The low-order nybble appears first. */
  443. if (*cp++ != '.') return -1; /* Then a dot. */
  444. n1 = hex_decode_digit(*cp++); /* The high-order nybble appears first. */
  445. if (*cp++ != '.') return -1; /* Then another dot. */
  446. if (n0<0 || n1 < 0) /* Both nybbles must be hex. */
  447. return -1;
  448. /* We don't check the length of the string in here. But that's okay,
  449. * since we already know that the string ends with ".ip6.arpa", and
  450. * there is no way to frameshift .ip6.arpa so it fits into the pattern
  451. * of hexdigit, period, hexdigit, period that we enforce above.
  452. */
  453. /* Assign from low-byte to high-byte. */
  454. in6.s6_addr[15-i] = n0 | (n1 << 4);
  455. }
  456. if (strcasecmp(cp, "ip6.arpa"))
  457. return -1;
  458. if (result) {
  459. tor_addr_from_in6(result, &in6);
  460. }
  461. return 1;
  462. }
  463. if (accept_regular) {
  464. tor_addr_t tmp;
  465. int r = tor_addr_parse(&tmp, address);
  466. if (r < 0)
  467. return 0;
  468. if (r != family && family != AF_UNSPEC)
  469. return -1;
  470. if (result)
  471. memcpy(result, &tmp, sizeof(tor_addr_t));
  472. return 1;
  473. }
  474. return 0;
  475. }
  476. /** Convert <b>addr</b> to an in-addr.arpa name or a .ip6.arpa name,
  477. * and store the result in the <b>outlen</b>-byte buffer at
  478. * <b>out</b>. Return the number of chars written to <b>out</b>, not
  479. * including the trailing \0, on success. Returns -1 on failure. */
  480. int
  481. tor_addr_to_PTR_name(char *out, size_t outlen,
  482. const tor_addr_t *addr)
  483. {
  484. tor_assert(out);
  485. tor_assert(addr);
  486. if (addr->family == AF_INET) {
  487. uint32_t a = tor_addr_to_ipv4h(addr);
  488. return tor_snprintf(out, outlen, "%d.%d.%d.%d.in-addr.arpa",
  489. (int)(uint8_t)((a )&0xff),
  490. (int)(uint8_t)((a>>8 )&0xff),
  491. (int)(uint8_t)((a>>16)&0xff),
  492. (int)(uint8_t)((a>>24)&0xff));
  493. } else if (addr->family == AF_INET6) {
  494. int i;
  495. char *cp = out;
  496. const uint8_t *bytes = tor_addr_to_in6_addr8(addr);
  497. if (outlen < REVERSE_LOOKUP_NAME_BUF_LEN)
  498. return -1;
  499. for (i = 15; i >= 0; --i) {
  500. uint8_t byte = bytes[i];
  501. *cp++ = "0123456789abcdef"[byte & 0x0f];
  502. *cp++ = '.';
  503. *cp++ = "0123456789abcdef"[byte >> 4];
  504. *cp++ = '.';
  505. }
  506. memcpy(cp, "ip6.arpa", 9); /* 8 characters plus NUL */
  507. return 32 * 2 + 8;
  508. }
  509. return -1;
  510. }
  511. /** Parse a string <b>s</b> containing an IPv4/IPv6 address, and possibly
  512. * a mask and port or port range. Store the parsed address in
  513. * <b>addr_out</b>, a mask (if any) in <b>mask_out</b>, and port(s) (if any)
  514. * in <b>port_min_out</b> and <b>port_max_out</b>.
  515. *
  516. * The syntax is:
  517. * Address OptMask OptPortRange
  518. * Address ::= IPv4Address / "[" IPv6Address "]" / "*"
  519. * OptMask ::= "/" Integer /
  520. * OptPortRange ::= ":*" / ":" Integer / ":" Integer "-" Integer /
  521. *
  522. * - If mask, minport, or maxport are NULL, we do not want these
  523. * options to be set; treat them as an error if present.
  524. * - If the string has no mask, the mask is set to /32 (IPv4) or /128 (IPv6).
  525. * - If the string has one port, it is placed in both min and max port
  526. * variables.
  527. * - If the string has no port(s), port_(min|max)_out are set to 1 and 65535.
  528. *
  529. * Return an address family on success, or -1 if an invalid address string is
  530. * provided.
  531. *
  532. * If 'flags & TAPMP_EXTENDED_STAR' is false, then the wildcard address '*'
  533. * yield an IPv4 wildcard.
  534. *
  535. * If 'flags & TAPMP_EXTENDED_STAR' is true, then the wildcard address '*'
  536. * yields an AF_UNSPEC wildcard address, and the following change is made
  537. * in the grammar above:
  538. * Address ::= IPv4Address / "[" IPv6Address "]" / "*" / "*4" / "*6"
  539. * with the new "*4" and "*6" productions creating a wildcard to match
  540. * IPv4 or IPv6 addresses.
  541. *
  542. */
  543. int
  544. tor_addr_parse_mask_ports(const char *s,
  545. unsigned flags,
  546. tor_addr_t *addr_out,
  547. maskbits_t *maskbits_out,
  548. uint16_t *port_min_out, uint16_t *port_max_out)
  549. {
  550. char *base = NULL, *address, *mask = NULL, *port = NULL, *rbracket = NULL;
  551. char *endptr;
  552. int any_flag=0, v4map=0;
  553. sa_family_t family;
  554. struct in6_addr in6_tmp;
  555. struct in_addr in_tmp;
  556. tor_assert(s);
  557. tor_assert(addr_out);
  558. /** Longest possible length for an address, mask, and port-range combination.
  559. * Includes IP, [], /mask, :, ports */
  560. #define MAX_ADDRESS_LENGTH (TOR_ADDR_BUF_LEN+2+(1+INET_NTOA_BUF_LEN)+12+1)
  561. if (strlen(s) > MAX_ADDRESS_LENGTH) {
  562. log_warn(LD_GENERAL, "Impossibly long IP %s; rejecting", escaped(s));
  563. goto err;
  564. }
  565. base = tor_strdup(s);
  566. /* Break 'base' into separate strings. */
  567. address = base;
  568. if (*address == '[') { /* Probably IPv6 */
  569. address++;
  570. rbracket = strchr(address, ']');
  571. if (!rbracket) {
  572. log_warn(LD_GENERAL,
  573. "No closing IPv6 bracket in address pattern; rejecting.");
  574. goto err;
  575. }
  576. }
  577. mask = strchr((rbracket?rbracket:address),'/');
  578. port = strchr((mask?mask:(rbracket?rbracket:address)), ':');
  579. if (port)
  580. *port++ = '\0';
  581. if (mask)
  582. *mask++ = '\0';
  583. if (rbracket)
  584. *rbracket = '\0';
  585. if (port && mask)
  586. tor_assert(port > mask);
  587. if (mask && rbracket)
  588. tor_assert(mask > rbracket);
  589. /* Now "address" is the a.b.c.d|'*'|abcd::1 part...
  590. * "mask" is the Mask|Maskbits part...
  591. * and "port" is the *|port|min-max part.
  592. */
  593. /* Process the address portion */
  594. memset(addr_out, 0, sizeof(tor_addr_t));
  595. if (!strcmp(address, "*")) {
  596. if (flags & TAPMP_EXTENDED_STAR) {
  597. family = AF_UNSPEC;
  598. tor_addr_make_unspec(addr_out);
  599. } else {
  600. family = AF_INET;
  601. tor_addr_from_ipv4h(addr_out, 0);
  602. }
  603. any_flag = 1;
  604. } else if (!strcmp(address, "*4") && (flags & TAPMP_EXTENDED_STAR)) {
  605. family = AF_INET;
  606. tor_addr_from_ipv4h(addr_out, 0);
  607. any_flag = 1;
  608. } else if (!strcmp(address, "*6") && (flags & TAPMP_EXTENDED_STAR)) {
  609. static char nil_bytes[16] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
  610. family = AF_INET6;
  611. tor_addr_from_ipv6_bytes(addr_out, nil_bytes);
  612. any_flag = 1;
  613. } else if (tor_inet_pton(AF_INET6, address, &in6_tmp) > 0) {
  614. family = AF_INET6;
  615. tor_addr_from_in6(addr_out, &in6_tmp);
  616. } else if (tor_inet_pton(AF_INET, address, &in_tmp) > 0) {
  617. family = AF_INET;
  618. tor_addr_from_in(addr_out, &in_tmp);
  619. } else {
  620. log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
  621. escaped(address));
  622. goto err;
  623. }
  624. v4map = tor_addr_is_v4(addr_out);
  625. /* Parse mask */
  626. if (maskbits_out) {
  627. int bits = 0;
  628. struct in_addr v4mask;
  629. if (mask) { /* the caller (tried to) specify a mask */
  630. bits = (int) strtol(mask, &endptr, 10);
  631. if (!*endptr) { /* strtol converted everything, so it was an integer */
  632. if ((bits<0 || bits>128) ||
  633. (family == AF_INET && bits > 32)) {
  634. log_warn(LD_GENERAL,
  635. "Bad number of mask bits (%d) on address range; rejecting.",
  636. bits);
  637. goto err;
  638. }
  639. } else { /* mask might still be an address-style mask */
  640. if (tor_inet_pton(AF_INET, mask, &v4mask) > 0) {
  641. bits = addr_mask_get_bits(ntohl(v4mask.s_addr));
  642. if (bits < 0) {
  643. log_warn(LD_GENERAL,
  644. "IPv4-style mask %s is not a prefix address; rejecting.",
  645. escaped(mask));
  646. goto err;
  647. }
  648. } else { /* Not IPv4; we don't do address-style IPv6 masks. */
  649. log_warn(LD_GENERAL,
  650. "Malformed mask on address range %s; rejecting.",
  651. escaped(s));
  652. goto err;
  653. }
  654. }
  655. if (family == AF_INET6 && v4map) {
  656. if (bits > 32 && bits < 96) { /* Crazy */
  657. log_warn(LD_GENERAL,
  658. "Bad mask bits %d for V4-mapped V6 address; rejecting.",
  659. bits);
  660. goto err;
  661. }
  662. /* XXXX_IP6 is this really what we want? */
  663. bits = 96 + bits%32; /* map v4-mapped masks onto 96-128 bits */
  664. }
  665. } else { /* pick an appropriate mask, as none was given */
  666. if (any_flag)
  667. bits = 0; /* This is okay whether it's V6 or V4 (FIX V4-mapped V6!) */
  668. else if (tor_addr_family(addr_out) == AF_INET)
  669. bits = 32;
  670. else if (tor_addr_family(addr_out) == AF_INET6)
  671. bits = 128;
  672. }
  673. *maskbits_out = (maskbits_t) bits;
  674. } else {
  675. if (mask) {
  676. log_warn(LD_GENERAL,
  677. "Unexpected mask in address %s; rejecting", escaped(s));
  678. goto err;
  679. }
  680. }
  681. /* Parse port(s) */
  682. if (port_min_out) {
  683. uint16_t port2;
  684. if (!port_max_out) /* caller specified one port; fake the second one */
  685. port_max_out = &port2;
  686. if (parse_port_range(port, port_min_out, port_max_out) < 0) {
  687. goto err;
  688. } else if ((*port_min_out != *port_max_out) && port_max_out == &port2) {
  689. log_warn(LD_GENERAL,
  690. "Wanted one port from address range, but there are two.");
  691. port_max_out = NULL; /* caller specified one port, so set this back */
  692. goto err;
  693. }
  694. } else {
  695. if (port) {
  696. log_warn(LD_GENERAL,
  697. "Unexpected ports in address %s; rejecting", escaped(s));
  698. goto err;
  699. }
  700. }
  701. tor_free(base);
  702. return tor_addr_family(addr_out);
  703. err:
  704. tor_free(base);
  705. return -1;
  706. }
  707. /** Determine whether an address is IPv4, either native or IPv4-mapped IPv6.
  708. * Note that this is about representation only, as any decent stack will
  709. * reject IPv4-mapped addresses received on the wire (and won't use them
  710. * on the wire either).
  711. */
  712. int
  713. tor_addr_is_v4(const tor_addr_t *addr)
  714. {
  715. tor_assert(addr);
  716. if (tor_addr_family(addr) == AF_INET)
  717. return 1;
  718. if (tor_addr_family(addr) == AF_INET6) {
  719. /* First two don't need to be ordered */
  720. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  721. if (a32[0] == 0 && a32[1] == 0 && ntohl(a32[2]) == 0x0000ffffu)
  722. return 1;
  723. }
  724. return 0; /* Not IPv4 - unknown family or a full-blood IPv6 address */
  725. }
  726. /** Determine whether an address <b>addr</b> is null, either all zeroes or
  727. * belonging to family AF_UNSPEC.
  728. */
  729. int
  730. tor_addr_is_null(const tor_addr_t *addr)
  731. {
  732. tor_assert(addr);
  733. switch (tor_addr_family(addr)) {
  734. case AF_INET6: {
  735. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  736. return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 0);
  737. }
  738. case AF_INET:
  739. return (tor_addr_to_ipv4n(addr) == 0);
  740. case AF_UNSPEC:
  741. return 1;
  742. default:
  743. log_warn(LD_BUG, "Called with unknown address family %d",
  744. (int)tor_addr_family(addr));
  745. return 0;
  746. }
  747. //return 1;
  748. }
  749. /** Return true iff <b>addr</b> is a loopback address */
  750. int
  751. tor_addr_is_loopback(const tor_addr_t *addr)
  752. {
  753. tor_assert(addr);
  754. switch (tor_addr_family(addr)) {
  755. case AF_INET6: {
  756. /* ::1 */
  757. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  758. return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) &&
  759. (ntohl(a32[3]) == 1);
  760. }
  761. case AF_INET:
  762. /* 127.0.0.1 */
  763. return (tor_addr_to_ipv4h(addr) & 0xff000000) == 0x7f000000;
  764. case AF_UNSPEC:
  765. return 0;
  766. default:
  767. tor_fragile_assert();
  768. return 0;
  769. }
  770. }
  771. /** Set <b>dest</b> to equal the IPv4 address in <b>v4addr</b> (given in
  772. * network order). */
  773. void
  774. tor_addr_from_ipv4n(tor_addr_t *dest, uint32_t v4addr)
  775. {
  776. tor_assert(dest);
  777. memset(dest, 0, sizeof(tor_addr_t));
  778. dest->family = AF_INET;
  779. dest->addr.in_addr.s_addr = v4addr;
  780. }
  781. /** Set <b>dest</b> to equal the IPv6 address in the 16 bytes at
  782. * <b>ipv6_bytes</b>. */
  783. void
  784. tor_addr_from_ipv6_bytes(tor_addr_t *dest, const char *ipv6_bytes)
  785. {
  786. tor_assert(dest);
  787. tor_assert(ipv6_bytes);
  788. memset(dest, 0, sizeof(tor_addr_t));
  789. dest->family = AF_INET6;
  790. memcpy(dest->addr.in6_addr.s6_addr, ipv6_bytes, 16);
  791. }
  792. /** Set <b>dest</b> equal to the IPv6 address in the in6_addr <b>in6</b>. */
  793. void
  794. tor_addr_from_in6(tor_addr_t *dest, const struct in6_addr *in6)
  795. {
  796. tor_addr_from_ipv6_bytes(dest, (const char*)in6->s6_addr);
  797. }
  798. /** Copy a tor_addr_t from <b>src</b> to <b>dest</b>.
  799. */
  800. void
  801. tor_addr_copy(tor_addr_t *dest, const tor_addr_t *src)
  802. {
  803. if (src == dest)
  804. return;
  805. tor_assert(src);
  806. tor_assert(dest);
  807. memcpy(dest, src, sizeof(tor_addr_t));
  808. }
  809. /** Given two addresses <b>addr1</b> and <b>addr2</b>, return 0 if the two
  810. * addresses are equivalent under the mask mbits, less than 0 if addr1
  811. * precedes addr2, and greater than 0 otherwise.
  812. *
  813. * Different address families (IPv4 vs IPv6) are always considered unequal if
  814. * <b>how</b> is CMP_EXACT; otherwise, IPv6-mapped IPv4 addresses are
  815. * considered equivalent to their IPv4 equivalents.
  816. */
  817. int
  818. tor_addr_compare(const tor_addr_t *addr1, const tor_addr_t *addr2,
  819. tor_addr_comparison_t how)
  820. {
  821. return tor_addr_compare_masked(addr1, addr2, 128, how);
  822. }
  823. /** As tor_addr_compare(), but only looks at the first <b>mask</b> bits of
  824. * the address.
  825. *
  826. * Reduce over-specific masks (>128 for ipv6, >32 for ipv4) to 128 or 32.
  827. *
  828. * The mask is interpreted relative to <b>addr1</b>, so that if a is
  829. * \::ffff:1.2.3.4, and b is 3.4.5.6,
  830. * tor_addr_compare_masked(a,b,100,CMP_SEMANTIC) is the same as
  831. * -tor_addr_compare_masked(b,a,4,CMP_SEMANTIC).
  832. *
  833. * We guarantee that the ordering from tor_addr_compare_masked is a total
  834. * order on addresses, but not that it is any particular order, or that it
  835. * will be the same from one version to the next.
  836. */
  837. int
  838. tor_addr_compare_masked(const tor_addr_t *addr1, const tor_addr_t *addr2,
  839. maskbits_t mbits, tor_addr_comparison_t how)
  840. {
  841. /** Helper: Evaluates to -1 if a is less than b, 0 if a equals b, or 1 if a
  842. * is greater than b. May evaluate a and b more than once. */
  843. #define TRISTATE(a,b) (((a)<(b))?-1: (((a)==(b))?0:1))
  844. sa_family_t family1, family2, v_family1, v_family2;
  845. tor_assert(addr1 && addr2);
  846. v_family1 = family1 = tor_addr_family(addr1);
  847. v_family2 = family2 = tor_addr_family(addr2);
  848. if (family1==family2) {
  849. /* When the families are the same, there's only one way to do the
  850. * comparison: exactly. */
  851. int r;
  852. switch (family1) {
  853. case AF_UNSPEC:
  854. return 0; /* All unspecified addresses are equal */
  855. case AF_INET: {
  856. uint32_t a1 = tor_addr_to_ipv4h(addr1);
  857. uint32_t a2 = tor_addr_to_ipv4h(addr2);
  858. if (mbits <= 0)
  859. return 0;
  860. if (mbits > 32)
  861. mbits = 32;
  862. a1 >>= (32-mbits);
  863. a2 >>= (32-mbits);
  864. r = TRISTATE(a1, a2);
  865. return r;
  866. }
  867. case AF_INET6: {
  868. const uint8_t *a1 = tor_addr_to_in6_addr8(addr1);
  869. const uint8_t *a2 = tor_addr_to_in6_addr8(addr2);
  870. const int bytes = mbits >> 3;
  871. const int leftover_bits = mbits & 7;
  872. if (bytes && (r = tor_memcmp(a1, a2, bytes))) {
  873. return r;
  874. } else if (leftover_bits) {
  875. uint8_t b1 = a1[bytes] >> (8-leftover_bits);
  876. uint8_t b2 = a2[bytes] >> (8-leftover_bits);
  877. return TRISTATE(b1, b2);
  878. } else {
  879. return 0;
  880. }
  881. }
  882. default:
  883. tor_fragile_assert();
  884. return 0;
  885. }
  886. } else if (how == CMP_EXACT) {
  887. /* Unequal families and an exact comparison? Stop now! */
  888. return TRISTATE(family1, family2);
  889. }
  890. if (mbits == 0)
  891. return 0;
  892. if (family1 == AF_INET6 && tor_addr_is_v4(addr1))
  893. v_family1 = AF_INET;
  894. if (family2 == AF_INET6 && tor_addr_is_v4(addr2))
  895. v_family2 = AF_INET;
  896. if (v_family1 == v_family2) {
  897. /* One or both addresses are a mapped ipv4 address. */
  898. uint32_t a1, a2;
  899. if (family1 == AF_INET6) {
  900. a1 = tor_addr_to_mapped_ipv4h(addr1);
  901. if (mbits <= 96)
  902. return 0;
  903. mbits -= 96; /* We just decided that the first 96 bits of a1 "match". */
  904. } else {
  905. a1 = tor_addr_to_ipv4h(addr1);
  906. }
  907. if (family2 == AF_INET6) {
  908. a2 = tor_addr_to_mapped_ipv4h(addr2);
  909. } else {
  910. a2 = tor_addr_to_ipv4h(addr2);
  911. }
  912. if (mbits <= 0) return 0;
  913. if (mbits > 32) mbits = 32;
  914. a1 >>= (32-mbits);
  915. a2 >>= (32-mbits);
  916. return TRISTATE(a1, a2);
  917. } else {
  918. /* Unequal families, and semantic comparison, and no semantic family
  919. * matches. */
  920. return TRISTATE(family1, family2);
  921. }
  922. }
  923. /** Return a hash code based on the address addr */
  924. unsigned int
  925. tor_addr_hash(const tor_addr_t *addr)
  926. {
  927. switch (tor_addr_family(addr)) {
  928. case AF_INET:
  929. return tor_addr_to_ipv4h(addr);
  930. case AF_UNSPEC:
  931. return 0x4e4d5342;
  932. case AF_INET6: {
  933. const uint32_t *u = tor_addr_to_in6_addr32(addr);
  934. return u[0] + u[1] + u[2] + u[3];
  935. }
  936. default:
  937. tor_fragile_assert();
  938. return 0;
  939. }
  940. }
  941. /** Return a newly allocated string with a representation of <b>addr</b>. */
  942. char *
  943. tor_dup_addr(const tor_addr_t *addr)
  944. {
  945. char buf[TOR_ADDR_BUF_LEN];
  946. if (tor_addr_to_str(buf, addr, sizeof(buf), 0)) {
  947. return tor_strdup(buf);
  948. } else {
  949. return tor_strdup("<unknown address type>");
  950. }
  951. }
  952. /** Return a string representing the address <b>addr</b>. This string
  953. * is statically allocated, and must not be freed. Each call to
  954. * <b>fmt_addr_impl</b> invalidates the last result of the function.
  955. * This function is not thread-safe. If <b>decorate</b> is set, add
  956. * brackets to IPv6 addresses.
  957. *
  958. * It's better to use the wrapper macros of this function:
  959. * <b>fmt_addr()</b> and <b>fmt_and_decorate_addr()</b>.
  960. */
  961. const char *
  962. fmt_addr_impl(const tor_addr_t *addr, int decorate)
  963. {
  964. static char buf[TOR_ADDR_BUF_LEN];
  965. if (!addr) return "<null>";
  966. if (tor_addr_to_str(buf, addr, sizeof(buf), decorate))
  967. return buf;
  968. else
  969. return "???";
  970. }
  971. /** Return a string representing the pair <b>addr</b> and <b>port</b>.
  972. * This calls fmt_and_decorate_addr internally, so IPv6 addresses will
  973. * have brackets, and the caveats of fmt_addr_impl apply.
  974. */
  975. const char *
  976. fmt_addrport(const tor_addr_t *addr, uint16_t port)
  977. {
  978. /* Add space for a colon and up to 5 digits. */
  979. static char buf[TOR_ADDR_BUF_LEN + 6];
  980. tor_snprintf(buf, sizeof(buf), "%s:%u", fmt_and_decorate_addr(addr), port);
  981. return buf;
  982. }
  983. /** Like fmt_addr(), but takes <b>addr</b> as a host-order IPv4
  984. * addresses. Also not thread-safe, also clobbers its return buffer on
  985. * repeated calls. */
  986. const char *
  987. fmt_addr32(uint32_t addr)
  988. {
  989. static char buf[INET_NTOA_BUF_LEN];
  990. struct in_addr in;
  991. in.s_addr = htonl(addr);
  992. tor_inet_ntoa(&in, buf, sizeof(buf));
  993. return buf;
  994. }
  995. /** Convert the string in <b>src</b> to a tor_addr_t <b>addr</b>. The string
  996. * may be an IPv4 address, an IPv6 address, or an IPv6 address surrounded by
  997. * square brackets.
  998. *
  999. * Return an address family on success, or -1 if an invalid address string is
  1000. * provided. */
  1001. int
  1002. tor_addr_parse(tor_addr_t *addr, const char *src)
  1003. {
  1004. char *tmp = NULL; /* Holds substring if we got a dotted quad. */
  1005. int result;
  1006. struct in_addr in_tmp;
  1007. struct in6_addr in6_tmp;
  1008. tor_assert(addr && src);
  1009. if (src[0] == '[' && src[1])
  1010. src = tmp = tor_strndup(src+1, strlen(src)-2);
  1011. if (tor_inet_pton(AF_INET6, src, &in6_tmp) > 0) {
  1012. result = AF_INET6;
  1013. tor_addr_from_in6(addr, &in6_tmp);
  1014. } else if (tor_inet_pton(AF_INET, src, &in_tmp) > 0) {
  1015. result = AF_INET;
  1016. tor_addr_from_in(addr, &in_tmp);
  1017. } else {
  1018. result = -1;
  1019. }
  1020. tor_free(tmp);
  1021. return result;
  1022. }
  1023. /** Parse an address or address-port combination from <b>s</b>, resolve the
  1024. * address as needed, and put the result in <b>addr_out</b> and (optionally)
  1025. * <b>port_out</b>. Return 0 on success, negative on failure. */
  1026. int
  1027. tor_addr_port_lookup(const char *s, tor_addr_t *addr_out, uint16_t *port_out)
  1028. {
  1029. const char *port;
  1030. tor_addr_t addr;
  1031. uint16_t portval;
  1032. char *tmp = NULL;
  1033. tor_assert(s);
  1034. tor_assert(addr_out);
  1035. s = eat_whitespace(s);
  1036. if (*s == '[') {
  1037. port = strstr(s, "]");
  1038. if (!port)
  1039. goto err;
  1040. tmp = tor_strndup(s+1, port-(s+1));
  1041. port = port+1;
  1042. if (*port == ':')
  1043. port++;
  1044. else
  1045. port = NULL;
  1046. } else {
  1047. port = strchr(s, ':');
  1048. if (port)
  1049. tmp = tor_strndup(s, port-s);
  1050. else
  1051. tmp = tor_strdup(s);
  1052. if (port)
  1053. ++port;
  1054. }
  1055. if (tor_addr_lookup(tmp, AF_UNSPEC, &addr) != 0)
  1056. goto err;
  1057. tor_free(tmp);
  1058. if (port) {
  1059. portval = (int) tor_parse_long(port, 10, 1, 65535, NULL, NULL);
  1060. if (!portval)
  1061. goto err;
  1062. } else {
  1063. portval = 0;
  1064. }
  1065. if (port_out)
  1066. *port_out = portval;
  1067. tor_addr_copy(addr_out, &addr);
  1068. return 0;
  1069. err:
  1070. tor_free(tmp);
  1071. return -1;
  1072. }
  1073. #ifdef _WIN32
  1074. typedef ULONG (WINAPI *GetAdaptersAddresses_fn_t)(
  1075. ULONG, ULONG, PVOID, PIP_ADAPTER_ADDRESSES, PULONG);
  1076. #endif
  1077. /** Try to ask our network interfaces what addresses they are bound to.
  1078. * Return a new smartlist of tor_addr_t on success, and NULL on failure.
  1079. * (An empty smartlist indicates that we successfully learned that we have no
  1080. * addresses.) Log failure messages at <b>severity</b>. */
  1081. static smartlist_t *
  1082. get_interface_addresses_raw(int severity)
  1083. {
  1084. #if defined(HAVE_GETIFADDRS)
  1085. /* Most free Unixy systems provide getifaddrs, which gives us a linked list
  1086. * of struct ifaddrs. */
  1087. struct ifaddrs *ifa = NULL;
  1088. const struct ifaddrs *i;
  1089. smartlist_t *result;
  1090. if (getifaddrs(&ifa) < 0) {
  1091. log_fn(severity, LD_NET, "Unable to call getifaddrs(): %s",
  1092. strerror(errno));
  1093. return NULL;
  1094. }
  1095. result = smartlist_new();
  1096. for (i = ifa; i; i = i->ifa_next) {
  1097. tor_addr_t tmp;
  1098. if (!i->ifa_addr)
  1099. continue;
  1100. if (i->ifa_addr->sa_family != AF_INET &&
  1101. i->ifa_addr->sa_family != AF_INET6)
  1102. continue;
  1103. if (tor_addr_from_sockaddr(&tmp, i->ifa_addr, NULL) < 0)
  1104. continue;
  1105. smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
  1106. }
  1107. freeifaddrs(ifa);
  1108. return result;
  1109. #elif defined(_WIN32)
  1110. /* Windows XP began to provide GetAdaptersAddresses. Windows 2000 had a
  1111. "GetAdaptersInfo", but that's deprecated; let's just try
  1112. GetAdaptersAddresses and fall back to connect+getsockname.
  1113. */
  1114. HANDLE lib = load_windows_system_library(TEXT("iphlpapi.dll"));
  1115. smartlist_t *result = NULL;
  1116. GetAdaptersAddresses_fn_t fn;
  1117. ULONG size, res;
  1118. IP_ADAPTER_ADDRESSES *addresses = NULL, *address;
  1119. (void) severity;
  1120. #define FLAGS (GAA_FLAG_SKIP_ANYCAST | \
  1121. GAA_FLAG_SKIP_MULTICAST | \
  1122. GAA_FLAG_SKIP_DNS_SERVER)
  1123. if (!lib) {
  1124. log_fn(severity, LD_NET, "Unable to load iphlpapi.dll");
  1125. goto done;
  1126. }
  1127. if (!(fn = (GetAdaptersAddresses_fn_t)
  1128. GetProcAddress(lib, "GetAdaptersAddresses"))) {
  1129. log_fn(severity, LD_NET, "Unable to obtain pointer to "
  1130. "GetAdaptersAddresses");
  1131. goto done;
  1132. }
  1133. /* Guess how much space we need. */
  1134. size = 15*1024;
  1135. addresses = tor_malloc(size);
  1136. res = fn(AF_UNSPEC, FLAGS, NULL, addresses, &size);
  1137. if (res == ERROR_BUFFER_OVERFLOW) {
  1138. /* we didn't guess that we needed enough space; try again */
  1139. tor_free(addresses);
  1140. addresses = tor_malloc(size);
  1141. res = fn(AF_UNSPEC, FLAGS, NULL, addresses, &size);
  1142. }
  1143. if (res != NO_ERROR) {
  1144. log_fn(severity, LD_NET, "GetAdaptersAddresses failed (result: %lu)", res);
  1145. goto done;
  1146. }
  1147. result = smartlist_new();
  1148. for (address = addresses; address; address = address->Next) {
  1149. IP_ADAPTER_UNICAST_ADDRESS *a;
  1150. for (a = address->FirstUnicastAddress; a; a = a->Next) {
  1151. /* Yes, it's a linked list inside a linked list */
  1152. struct sockaddr *sa = a->Address.lpSockaddr;
  1153. tor_addr_t tmp;
  1154. if (sa->sa_family != AF_INET && sa->sa_family != AF_INET6)
  1155. continue;
  1156. if (tor_addr_from_sockaddr(&tmp, sa, NULL) < 0)
  1157. continue;
  1158. smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
  1159. }
  1160. }
  1161. done:
  1162. if (lib)
  1163. FreeLibrary(lib);
  1164. tor_free(addresses);
  1165. return result;
  1166. #elif defined(SIOCGIFCONF) && defined(HAVE_IOCTL)
  1167. /* Some older unixy systems make us use ioctl(SIOCGIFCONF) */
  1168. struct ifconf ifc;
  1169. int fd, i, sz, n;
  1170. smartlist_t *result = NULL;
  1171. /* This interface, AFAICT, only supports AF_INET addresses */
  1172. fd = socket(AF_INET, SOCK_DGRAM, 0);
  1173. if (fd < 0) {
  1174. tor_log(severity, LD_NET, "socket failed: %s", strerror(errno));
  1175. goto done;
  1176. }
  1177. /* Guess how much space we need. */
  1178. ifc.ifc_len = sz = 15*1024;
  1179. ifc.ifc_ifcu.ifcu_req = tor_malloc(sz);
  1180. if (ioctl(fd, SIOCGIFCONF, &ifc) < 0) {
  1181. tor_log(severity, LD_NET, "ioctl failed: %s", strerror(errno));
  1182. close(fd);
  1183. goto done;
  1184. }
  1185. close(fd);
  1186. result = smartlist_new();
  1187. if (ifc.ifc_len < sz)
  1188. sz = ifc.ifc_len;
  1189. n = sz / sizeof(struct ifreq);
  1190. for (i = 0; i < n ; ++i) {
  1191. struct ifreq *r = &ifc.ifc_ifcu.ifcu_req[i];
  1192. struct sockaddr *sa = &r->ifr_addr;
  1193. tor_addr_t tmp;
  1194. if (sa->sa_family != AF_INET && sa->sa_family != AF_INET6)
  1195. continue; /* should be impossible */
  1196. if (tor_addr_from_sockaddr(&tmp, sa, NULL) < 0)
  1197. continue;
  1198. smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
  1199. }
  1200. done:
  1201. tor_free(ifc.ifc_ifcu.ifcu_req);
  1202. return result;
  1203. #else
  1204. (void) severity;
  1205. return NULL;
  1206. #endif
  1207. }
  1208. /** Return true iff <b>a</b> is a multicast address. */
  1209. static int
  1210. tor_addr_is_multicast(const tor_addr_t *a)
  1211. {
  1212. sa_family_t family = tor_addr_family(a);
  1213. if (family == AF_INET) {
  1214. uint32_t ipv4h = tor_addr_to_ipv4h(a);
  1215. if ((ipv4h >> 24) == 0xe0)
  1216. return 1; /* Multicast */
  1217. } else if (family == AF_INET6) {
  1218. const uint8_t *a32 = tor_addr_to_in6_addr8(a);
  1219. if (a32[0] == 0xff)
  1220. return 1;
  1221. }
  1222. return 0;
  1223. }
  1224. /** Set *<b>addr</b> to the IP address (if any) of whatever interface
  1225. * connects to the Internet. This address should only be used in checking
  1226. * whether our address has changed. Return 0 on success, -1 on failure.
  1227. */
  1228. int
  1229. get_interface_address6(int severity, sa_family_t family, tor_addr_t *addr)
  1230. {
  1231. /* XXX really, this function should yield a smartlist of addresses. */
  1232. smartlist_t *addrs;
  1233. int sock=-1, r=-1;
  1234. struct sockaddr_storage my_addr, target_addr;
  1235. socklen_t addr_len;
  1236. tor_assert(addr);
  1237. /* Try to do this the smart way if possible. */
  1238. if ((addrs = get_interface_addresses_raw(severity))) {
  1239. int rv = -1;
  1240. SMARTLIST_FOREACH_BEGIN(addrs, tor_addr_t *, a) {
  1241. if (family != AF_UNSPEC && family != tor_addr_family(a))
  1242. continue;
  1243. if (tor_addr_is_loopback(a) ||
  1244. tor_addr_is_multicast(a))
  1245. continue;
  1246. tor_addr_copy(addr, a);
  1247. rv = 0;
  1248. /* If we found a non-internal address, declare success. Otherwise,
  1249. * keep looking. */
  1250. if (!tor_addr_is_internal(a, 0))
  1251. break;
  1252. } SMARTLIST_FOREACH_END(a);
  1253. SMARTLIST_FOREACH(addrs, tor_addr_t *, a, tor_free(a));
  1254. smartlist_free(addrs);
  1255. return rv;
  1256. }
  1257. /* Okay, the smart way is out. */
  1258. memset(addr, 0, sizeof(tor_addr_t));
  1259. memset(&target_addr, 0, sizeof(target_addr));
  1260. /* Don't worry: no packets are sent. We just need to use a real address
  1261. * on the actual Internet. */
  1262. if (family == AF_INET6) {
  1263. struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&target_addr;
  1264. /* Use the "discard" service port */
  1265. sin6->sin6_port = htons(9);
  1266. sock = tor_open_socket(PF_INET6,SOCK_DGRAM,IPPROTO_UDP);
  1267. addr_len = (socklen_t)sizeof(struct sockaddr_in6);
  1268. sin6->sin6_family = AF_INET6;
  1269. S6_ADDR16(sin6->sin6_addr)[0] = htons(0x2002); /* 2002:: */
  1270. } else if (family == AF_INET) {
  1271. struct sockaddr_in *sin = (struct sockaddr_in*)&target_addr;
  1272. /* Use the "discard" service port */
  1273. sin->sin_port = htons(9);
  1274. sock = tor_open_socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP);
  1275. addr_len = (socklen_t)sizeof(struct sockaddr_in);
  1276. sin->sin_family = AF_INET;
  1277. sin->sin_addr.s_addr = htonl(0x12000001); /* 18.0.0.1 */
  1278. } else {
  1279. return -1;
  1280. }
  1281. if (sock < 0) {
  1282. int e = tor_socket_errno(-1);
  1283. log_fn(severity, LD_NET, "unable to create socket: %s",
  1284. tor_socket_strerror(e));
  1285. goto err;
  1286. }
  1287. if (connect(sock,(struct sockaddr *)&target_addr, addr_len) < 0) {
  1288. int e = tor_socket_errno(sock);
  1289. log_fn(severity, LD_NET, "connect() failed: %s", tor_socket_strerror(e));
  1290. goto err;
  1291. }
  1292. if (getsockname(sock,(struct sockaddr*)&my_addr, &addr_len)) {
  1293. int e = tor_socket_errno(sock);
  1294. log_fn(severity, LD_NET, "getsockname() to determine interface failed: %s",
  1295. tor_socket_strerror(e));
  1296. goto err;
  1297. }
  1298. tor_addr_from_sockaddr(addr, (struct sockaddr*)&my_addr, NULL);
  1299. r=0;
  1300. err:
  1301. if (sock >= 0)
  1302. tor_close_socket(sock);
  1303. return r;
  1304. }
  1305. /* ======
  1306. * IPv4 helpers
  1307. * XXXX024 IPv6 deprecate some of these.
  1308. */
  1309. /** Return true iff <b>ip</b> (in host order) is an IP reserved to localhost,
  1310. * or reserved for local networks by RFC 1918.
  1311. */
  1312. int
  1313. is_internal_IP(uint32_t ip, int for_listening)
  1314. {
  1315. tor_addr_t myaddr;
  1316. myaddr.family = AF_INET;
  1317. myaddr.addr.in_addr.s_addr = htonl(ip);
  1318. return tor_addr_is_internal(&myaddr, for_listening);
  1319. }
  1320. /** Given an address of the form "ip:port", try to divide it into its
  1321. * ip and port portions, setting *<b>address_out</b> to a newly
  1322. * allocated string holding the address portion and *<b>port_out</b>
  1323. * to the port.
  1324. *
  1325. * Don't do DNS lookups and don't allow domain names in the <ip> field.
  1326. * Don't accept <b>addrport</b> of the form "<ip>" or "<ip>:0".
  1327. *
  1328. * Return 0 on success, -1 on failure. */
  1329. int
  1330. tor_addr_port_parse(int severity, const char *addrport,
  1331. tor_addr_t *address_out, uint16_t *port_out)
  1332. {
  1333. int retval = -1;
  1334. int r;
  1335. char *addr_tmp = NULL;
  1336. tor_assert(addrport);
  1337. tor_assert(address_out);
  1338. tor_assert(port_out);
  1339. r = tor_addr_port_split(severity, addrport, &addr_tmp, port_out);
  1340. if (r < 0)
  1341. goto done;
  1342. if (!*port_out)
  1343. goto done;
  1344. /* make sure that address_out is an IP address */
  1345. if (tor_addr_parse(address_out, addr_tmp) < 0)
  1346. goto done;
  1347. retval = 0;
  1348. done:
  1349. tor_free(addr_tmp);
  1350. return retval;
  1351. }
  1352. /** Given an address of the form "host[:port]", try to divide it into its host
  1353. * ane port portions, setting *<b>address_out</b> to a newly allocated string
  1354. * holding the address portion and *<b>port_out</b> to the port (or 0 if no
  1355. * port is given). Return 0 on success, -1 on failure. */
  1356. int
  1357. tor_addr_port_split(int severity, const char *addrport,
  1358. char **address_out, uint16_t *port_out)
  1359. {
  1360. tor_assert(addrport);
  1361. tor_assert(address_out);
  1362. tor_assert(port_out);
  1363. return addr_port_lookup(severity, addrport, address_out, NULL, port_out);
  1364. }
  1365. /** Parse a string of the form "host[:port]" from <b>addrport</b>. If
  1366. * <b>address</b> is provided, set *<b>address</b> to a copy of the
  1367. * host portion of the string. If <b>addr</b> is provided, try to
  1368. * resolve the host portion of the string and store it into
  1369. * *<b>addr</b> (in host byte order). If <b>port_out</b> is provided,
  1370. * store the port number into *<b>port_out</b>, or 0 if no port is given.
  1371. * If <b>port_out</b> is NULL, then there must be no port number in
  1372. * <b>addrport</b>.
  1373. * Return 0 on success, -1 on failure.
  1374. */
  1375. int
  1376. addr_port_lookup(int severity, const char *addrport, char **address,
  1377. uint32_t *addr, uint16_t *port_out)
  1378. {
  1379. const char *colon;
  1380. char *address_ = NULL;
  1381. int port_;
  1382. int ok = 1;
  1383. tor_assert(addrport);
  1384. colon = strrchr(addrport, ':');
  1385. if (colon) {
  1386. address_ = tor_strndup(addrport, colon-addrport);
  1387. port_ = (int) tor_parse_long(colon+1,10,1,65535,NULL,NULL);
  1388. if (!port_) {
  1389. log_fn(severity, LD_GENERAL, "Port %s out of range", escaped(colon+1));
  1390. ok = 0;
  1391. }
  1392. if (!port_out) {
  1393. char *esc_addrport = esc_for_log(addrport);
  1394. log_fn(severity, LD_GENERAL,
  1395. "Port %s given on %s when not required",
  1396. escaped(colon+1), esc_addrport);
  1397. tor_free(esc_addrport);
  1398. ok = 0;
  1399. }
  1400. } else {
  1401. address_ = tor_strdup(addrport);
  1402. port_ = 0;
  1403. }
  1404. if (addr) {
  1405. /* There's an addr pointer, so we need to resolve the hostname. */
  1406. if (tor_lookup_hostname(address_,addr)) {
  1407. log_fn(severity, LD_NET, "Couldn't look up %s", escaped(address_));
  1408. ok = 0;
  1409. *addr = 0;
  1410. }
  1411. }
  1412. if (address && ok) {
  1413. *address = address_;
  1414. } else {
  1415. if (address)
  1416. *address = NULL;
  1417. tor_free(address_);
  1418. }
  1419. if (port_out)
  1420. *port_out = ok ? ((uint16_t) port_) : 0;
  1421. return ok ? 0 : -1;
  1422. }
  1423. /** If <b>mask</b> is an address mask for a bit-prefix, return the number of
  1424. * bits. Otherwise, return -1. */
  1425. int
  1426. addr_mask_get_bits(uint32_t mask)
  1427. {
  1428. int i;
  1429. if (mask == 0)
  1430. return 0;
  1431. if (mask == 0xFFFFFFFFu)
  1432. return 32;
  1433. for (i=0; i<=32; ++i) {
  1434. if (mask == (uint32_t) ~((1u<<(32-i))-1)) {
  1435. return i;
  1436. }
  1437. }
  1438. return -1;
  1439. }
  1440. /** Parse a string <b>s</b> in the format of (*|port(-maxport)?)?, setting the
  1441. * various *out pointers as appropriate. Return 0 on success, -1 on failure.
  1442. */
  1443. int
  1444. parse_port_range(const char *port, uint16_t *port_min_out,
  1445. uint16_t *port_max_out)
  1446. {
  1447. int port_min, port_max, ok;
  1448. tor_assert(port_min_out);
  1449. tor_assert(port_max_out);
  1450. if (!port || *port == '\0' || strcmp(port, "*") == 0) {
  1451. port_min = 1;
  1452. port_max = 65535;
  1453. } else {
  1454. char *endptr = NULL;
  1455. port_min = (int)tor_parse_long(port, 10, 0, 65535, &ok, &endptr);
  1456. if (!ok) {
  1457. log_warn(LD_GENERAL,
  1458. "Malformed port %s on address range; rejecting.",
  1459. escaped(port));
  1460. return -1;
  1461. } else if (endptr && *endptr == '-') {
  1462. port = endptr+1;
  1463. endptr = NULL;
  1464. port_max = (int)tor_parse_long(port, 10, 1, 65535, &ok, &endptr);
  1465. if (!ok) {
  1466. log_warn(LD_GENERAL,
  1467. "Malformed port %s on address range; rejecting.",
  1468. escaped(port));
  1469. return -1;
  1470. }
  1471. } else {
  1472. port_max = port_min;
  1473. }
  1474. if (port_min > port_max) {
  1475. log_warn(LD_GENERAL, "Insane port range on address policy; rejecting.");
  1476. return -1;
  1477. }
  1478. }
  1479. if (port_min < 1)
  1480. port_min = 1;
  1481. if (port_max > 65535)
  1482. port_max = 65535;
  1483. *port_min_out = (uint16_t) port_min;
  1484. *port_max_out = (uint16_t) port_max;
  1485. return 0;
  1486. }
  1487. /** Given an IPv4 in_addr struct *<b>in</b> (in network order, as usual),
  1488. * write it as a string into the <b>buf_len</b>-byte buffer in
  1489. * <b>buf</b>.
  1490. */
  1491. int
  1492. tor_inet_ntoa(const struct in_addr *in, char *buf, size_t buf_len)
  1493. {
  1494. uint32_t a = ntohl(in->s_addr);
  1495. return tor_snprintf(buf, buf_len, "%d.%d.%d.%d",
  1496. (int)(uint8_t)((a>>24)&0xff),
  1497. (int)(uint8_t)((a>>16)&0xff),
  1498. (int)(uint8_t)((a>>8 )&0xff),
  1499. (int)(uint8_t)((a )&0xff));
  1500. }
  1501. /** Given a host-order <b>addr</b>, call tor_inet_ntop() on it
  1502. * and return a strdup of the resulting address.
  1503. */
  1504. char *
  1505. tor_dup_ip(uint32_t addr)
  1506. {
  1507. char buf[TOR_ADDR_BUF_LEN];
  1508. struct in_addr in;
  1509. in.s_addr = htonl(addr);
  1510. tor_inet_ntop(AF_INET, &in, buf, sizeof(buf));
  1511. return tor_strdup(buf);
  1512. }
  1513. /**
  1514. * Set *<b>addr</b> to the host-order IPv4 address (if any) of whatever
  1515. * interface connects to the Internet. This address should only be used in
  1516. * checking whether our address has changed. Return 0 on success, -1 on
  1517. * failure.
  1518. */
  1519. int
  1520. get_interface_address(int severity, uint32_t *addr)
  1521. {
  1522. tor_addr_t local_addr;
  1523. int r;
  1524. r = get_interface_address6(severity, AF_INET, &local_addr);
  1525. if (r>=0)
  1526. *addr = tor_addr_to_ipv4h(&local_addr);
  1527. return r;
  1528. }
  1529. /** Return true if we can tell that <b>name</b> is a canonical name for the
  1530. * loopback address. */
  1531. int
  1532. tor_addr_hostname_is_local(const char *name)
  1533. {
  1534. return !strcasecmp(name, "localhost") ||
  1535. !strcasecmp(name, "local") ||
  1536. !strcasecmpend(name, ".local");
  1537. }
  1538. /** Return a newly allocated tor_addr_port_t with <b>addr</b> and
  1539. <b>port</b> filled in. */
  1540. tor_addr_port_t *
  1541. tor_addr_port_new(const tor_addr_t *addr, uint16_t port)
  1542. {
  1543. tor_addr_port_t *ap = tor_malloc_zero(sizeof(tor_addr_port_t));
  1544. if (addr)
  1545. tor_addr_copy(&ap->addr, addr);
  1546. ap->port = port;
  1547. return ap;
  1548. }