compat_time.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. /* Copyright (c) 2003-2004, Roger Dingledine
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2018, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. /**
  6. * \file compat_time.c
  7. * \brief Portable wrappers for finding out the current time, running
  8. * timers, etc.
  9. **/
  10. #define COMPAT_TIME_PRIVATE
  11. #include "lib/time/compat_time.h"
  12. #include "lib/err/torerr.h"
  13. #include "lib/log/log.h"
  14. #include "lib/log/util_bug.h"
  15. #include "lib/intmath/muldiv.h"
  16. #include "lib/intmath/bits.h"
  17. #include "lib/fs/winlib.h"
  18. #include "lib/wallclock/timeval.h"
  19. #ifdef _WIN32
  20. #include <winsock2.h>
  21. #include <windows.h>
  22. #endif
  23. #ifdef HAVE_SYS_TYPES_H
  24. #include <sys/types.h>
  25. #endif
  26. #ifdef HAVE_SYS_TIME_H
  27. #include <sys/time.h>
  28. #endif
  29. #ifdef HAVE_UNISTD_H
  30. #include <unistd.h>
  31. #endif
  32. #ifdef TOR_UNIT_TESTS
  33. #if !defined(HAVE_USLEEP) && defined(HAVE_SYS_SELECT_H)
  34. /* as fallback implementation for tor_sleep_msec */
  35. #include <sys/select.h>
  36. #endif
  37. #endif /* defined(TOR_UNIT_TESTS) */
  38. #ifdef __APPLE__
  39. #include <mach/mach_time.h>
  40. #endif
  41. #include <errno.h>
  42. #include <stdlib.h>
  43. #include <string.h>
  44. #ifdef _WIN32
  45. #undef HAVE_CLOCK_GETTIME
  46. #endif
  47. #ifdef TOR_UNIT_TESTS
  48. /** Delay for <b>msec</b> milliseconds. Only used in tests. */
  49. void
  50. tor_sleep_msec(int msec)
  51. {
  52. #ifdef _WIN32
  53. Sleep(msec);
  54. #elif defined(HAVE_USLEEP)
  55. sleep(msec / 1000);
  56. /* Some usleep()s hate sleeping more than 1 sec */
  57. usleep((msec % 1000) * 1000);
  58. #elif defined(HAVE_SYS_SELECT_H)
  59. struct timeval tv = { msec / 1000, (msec % 1000) * 1000};
  60. select(0, NULL, NULL, NULL, &tv);
  61. #else
  62. sleep(CEIL_DIV(msec, 1000));
  63. #endif /* defined(_WIN32) || ... */
  64. }
  65. #endif /* defined(TOR_UNIT_TESTS) */
  66. #define ONE_MILLION ((int64_t) (1000 * 1000))
  67. #define ONE_BILLION ((int64_t) (1000 * 1000 * 1000))
  68. /** True iff monotime_init has been called. */
  69. static int monotime_initialized = 0;
  70. static monotime_t initialized_at;
  71. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  72. static monotime_coarse_t initialized_at_coarse;
  73. #endif
  74. #ifdef TOR_UNIT_TESTS
  75. /** True if we are running unit tests and overriding the current monotonic
  76. * time. Note that mocked monotonic time might not be monotonic.
  77. */
  78. static int monotime_mocking_enabled = 0;
  79. static monotime_t initialized_at_saved;
  80. static int64_t mock_time_nsec = 0;
  81. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  82. static int64_t mock_time_nsec_coarse = 0;
  83. static monotime_coarse_t initialized_at_coarse_saved;
  84. #endif
  85. void
  86. monotime_enable_test_mocking(void)
  87. {
  88. if (BUG(monotime_initialized == 0)) {
  89. monotime_init();
  90. }
  91. tor_assert_nonfatal(monotime_mocking_enabled == 0);
  92. monotime_mocking_enabled = 1;
  93. memcpy(&initialized_at_saved,
  94. &initialized_at, sizeof(monotime_t));
  95. memset(&initialized_at, 0, sizeof(monotime_t));
  96. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  97. memcpy(&initialized_at_coarse_saved,
  98. &initialized_at_coarse, sizeof(monotime_coarse_t));
  99. memset(&initialized_at_coarse, 0, sizeof(monotime_coarse_t));
  100. #endif
  101. }
  102. void
  103. monotime_disable_test_mocking(void)
  104. {
  105. tor_assert_nonfatal(monotime_mocking_enabled == 1);
  106. monotime_mocking_enabled = 0;
  107. memcpy(&initialized_at,
  108. &initialized_at_saved, sizeof(monotime_t));
  109. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  110. memcpy(&initialized_at_coarse,
  111. &initialized_at_coarse_saved, sizeof(monotime_coarse_t));
  112. #endif
  113. }
  114. void
  115. monotime_set_mock_time_nsec(int64_t nsec)
  116. {
  117. tor_assert_nonfatal(monotime_mocking_enabled == 1);
  118. mock_time_nsec = nsec;
  119. }
  120. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  121. void
  122. monotime_coarse_set_mock_time_nsec(int64_t nsec)
  123. {
  124. tor_assert_nonfatal(monotime_mocking_enabled == 1);
  125. mock_time_nsec_coarse = nsec;
  126. }
  127. #endif /* defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */
  128. #endif /* defined(TOR_UNIT_TESTS) */
  129. /* "ratchet" functions for monotonic time. */
  130. #if defined(_WIN32) || defined(TOR_UNIT_TESTS)
  131. /** Protected by lock: last value returned by monotime_get(). */
  132. static int64_t last_pctr = 0;
  133. /** Protected by lock: offset we must add to monotonic time values. */
  134. static int64_t pctr_offset = 0;
  135. /* If we are using GetTickCount(), how many times has it rolled over? */
  136. static uint32_t rollover_count = 0;
  137. /* If we are using GetTickCount(), what's the last value it returned? */
  138. static int64_t last_tick_count = 0;
  139. /** Helper for windows: Called with a sequence of times that are supposed
  140. * to be monotonic; increments them as appropriate so that they actually
  141. * _are_ monotonic.
  142. *
  143. * Caller must hold lock. */
  144. STATIC int64_t
  145. ratchet_performance_counter(int64_t count_raw)
  146. {
  147. /* must hold lock */
  148. const int64_t count_adjusted = count_raw + pctr_offset;
  149. if (PREDICT_UNLIKELY(count_adjusted < last_pctr)) {
  150. /* Monotonicity failed! Pretend no time elapsed. */
  151. pctr_offset = last_pctr - count_raw;
  152. return last_pctr;
  153. } else {
  154. last_pctr = count_adjusted;
  155. return count_adjusted;
  156. }
  157. }
  158. STATIC int64_t
  159. ratchet_coarse_performance_counter(const int64_t count_raw)
  160. {
  161. int64_t count = count_raw + (((int64_t)rollover_count) << 32);
  162. while (PREDICT_UNLIKELY(count < last_tick_count)) {
  163. ++rollover_count;
  164. count = count_raw + (((int64_t)rollover_count) << 32);
  165. }
  166. last_tick_count = count;
  167. return count;
  168. }
  169. #endif /* defined(_WIN32) || defined(TOR_UNIT_TESTS) */
  170. #if defined(MONOTIME_USING_GETTIMEOFDAY) || defined(TOR_UNIT_TESTS)
  171. static struct timeval last_timeofday = { 0, 0 };
  172. static struct timeval timeofday_offset = { 0, 0 };
  173. /** Helper for gettimeofday(): Called with a sequence of times that are
  174. * supposed to be monotonic; increments them as appropriate so that they
  175. * actually _are_ monotonic.
  176. *
  177. * Caller must hold lock. */
  178. STATIC void
  179. ratchet_timeval(const struct timeval *timeval_raw, struct timeval *out)
  180. {
  181. /* must hold lock */
  182. timeradd(timeval_raw, &timeofday_offset, out);
  183. if (PREDICT_UNLIKELY(timercmp(out, &last_timeofday, OP_LT))) {
  184. /* time ran backwards. Instead, declare that no time occurred. */
  185. timersub(&last_timeofday, timeval_raw, &timeofday_offset);
  186. memcpy(out, &last_timeofday, sizeof(struct timeval));
  187. } else {
  188. memcpy(&last_timeofday, out, sizeof(struct timeval));
  189. }
  190. }
  191. #endif /* defined(MONOTIME_USING_GETTIMEOFDAY) || defined(TOR_UNIT_TESTS) */
  192. #ifdef TOR_UNIT_TESTS
  193. /** For testing: reset all the ratchets */
  194. void
  195. monotime_reset_ratchets_for_testing(void)
  196. {
  197. last_pctr = pctr_offset = last_tick_count = 0;
  198. rollover_count = 0;
  199. memset(&last_timeofday, 0, sizeof(struct timeval));
  200. memset(&timeofday_offset, 0, sizeof(struct timeval));
  201. }
  202. #endif /* defined(TOR_UNIT_TESTS) */
  203. #ifdef __APPLE__
  204. /** Initialized on startup: tells is how to convert from ticks to
  205. * nanoseconds.
  206. */
  207. static struct mach_timebase_info mach_time_info;
  208. static struct mach_timebase_info mach_time_info_msec_cvt;
  209. static int monotime_shift = 0;
  210. static void
  211. monotime_init_internal(void)
  212. {
  213. tor_assert(!monotime_initialized);
  214. int r = mach_timebase_info(&mach_time_info);
  215. tor_assert(r == 0);
  216. tor_assert(mach_time_info.denom != 0);
  217. {
  218. // approximate only.
  219. uint64_t ns_per_tick = mach_time_info.numer / mach_time_info.denom;
  220. uint64_t ms_per_tick = ns_per_tick * ONE_MILLION;
  221. // requires that tor_log2(0) == 0.
  222. monotime_shift = tor_log2(ms_per_tick);
  223. }
  224. {
  225. // For converting ticks to milliseconds in a 32-bit-friendly way, we
  226. // will first right-shift by 20, and then multiply by 20/19, since
  227. // (1<<20) * 19/20 is about 1e6. We precompute a new numerate and
  228. // denominator here to avoid multiple multiplies.
  229. mach_time_info_msec_cvt.numer = mach_time_info.numer * 20;
  230. mach_time_info_msec_cvt.denom = mach_time_info.denom * 19;
  231. }
  232. }
  233. /**
  234. * Set "out" to the most recent monotonic time value
  235. */
  236. void
  237. monotime_get(monotime_t *out)
  238. {
  239. #ifdef TOR_UNIT_TESTS
  240. if (monotime_mocking_enabled) {
  241. out->abstime_ = (mock_time_nsec * mach_time_info.denom)
  242. / mach_time_info.numer;
  243. return;
  244. }
  245. #endif /* defined(TOR_UNIT_TESTS) */
  246. out->abstime_ = mach_absolute_time();
  247. }
  248. #if defined(HAVE_MACH_APPROXIMATE_TIME)
  249. void
  250. monotime_coarse_get(monotime_coarse_t *out)
  251. {
  252. #ifdef TOR_UNIT_TESTS
  253. if (monotime_mocking_enabled) {
  254. out->abstime_ = (mock_time_nsec_coarse * mach_time_info.denom)
  255. / mach_time_info.numer;
  256. return;
  257. }
  258. #endif /* defined(TOR_UNIT_TESTS) */
  259. out->abstime_ = mach_approximate_time();
  260. }
  261. #endif
  262. /**
  263. * Return the number of nanoseconds between <b>start</b> and <b>end</b>.
  264. */
  265. int64_t
  266. monotime_diff_nsec(const monotime_t *start,
  267. const monotime_t *end)
  268. {
  269. if (BUG(mach_time_info.denom == 0)) {
  270. monotime_init();
  271. }
  272. const int64_t diff_ticks = end->abstime_ - start->abstime_;
  273. const int64_t diff_nsec =
  274. (diff_ticks * mach_time_info.numer) / mach_time_info.denom;
  275. return diff_nsec;
  276. }
  277. int32_t
  278. monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
  279. const monotime_coarse_t *end)
  280. {
  281. if (BUG(mach_time_info.denom == 0)) {
  282. monotime_init();
  283. }
  284. const int64_t diff_ticks = end->abstime_ - start->abstime_;
  285. /* We already require in di_ops.c that right-shift performs a sign-extend. */
  286. const int32_t diff_microticks = (int32_t)(diff_ticks >> 20);
  287. return (diff_microticks * mach_time_info_msec_cvt.numer) /
  288. mach_time_info_msec_cvt.denom;
  289. }
  290. uint32_t
  291. monotime_coarse_to_stamp(const monotime_coarse_t *t)
  292. {
  293. return (uint32_t)(t->abstime_ >> monotime_shift);
  294. }
  295. int
  296. monotime_is_zero(const monotime_t *val)
  297. {
  298. return val->abstime_ == 0;
  299. }
  300. void
  301. monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec)
  302. {
  303. const uint64_t nsec = msec * ONE_MILLION;
  304. const uint64_t ticks = (nsec * mach_time_info.denom) / mach_time_info.numer;
  305. out->abstime_ = val->abstime_ + ticks;
  306. }
  307. /* end of "__APPLE__" */
  308. #elif defined(HAVE_CLOCK_GETTIME)
  309. #ifdef CLOCK_MONOTONIC_COARSE
  310. /**
  311. * Which clock should we use for coarse-grained monotonic time? By default
  312. * this is CLOCK_MONOTONIC_COARSE, but it might not work -- for example,
  313. * if we're compiled with newer Linux headers and then we try to run on
  314. * an old Linux kernel. In that case, we will fall back to CLOCK_MONOTONIC.
  315. */
  316. static int clock_monotonic_coarse = CLOCK_MONOTONIC_COARSE;
  317. #endif /* defined(CLOCK_MONOTONIC_COARSE) */
  318. static void
  319. monotime_init_internal(void)
  320. {
  321. #ifdef CLOCK_MONOTONIC_COARSE
  322. struct timespec ts;
  323. if (clock_gettime(CLOCK_MONOTONIC_COARSE, &ts) < 0) {
  324. log_info(LD_GENERAL, "CLOCK_MONOTONIC_COARSE isn't working (%s); "
  325. "falling back to CLOCK_MONOTONIC.", strerror(errno));
  326. clock_monotonic_coarse = CLOCK_MONOTONIC;
  327. }
  328. #endif /* defined(CLOCK_MONOTONIC_COARSE) */
  329. }
  330. void
  331. monotime_get(monotime_t *out)
  332. {
  333. #ifdef TOR_UNIT_TESTS
  334. if (monotime_mocking_enabled) {
  335. out->ts_.tv_sec = (time_t) (mock_time_nsec / ONE_BILLION);
  336. out->ts_.tv_nsec = (int) (mock_time_nsec % ONE_BILLION);
  337. return;
  338. }
  339. #endif /* defined(TOR_UNIT_TESTS) */
  340. int r = clock_gettime(CLOCK_MONOTONIC, &out->ts_);
  341. tor_assert(r == 0);
  342. }
  343. #ifdef CLOCK_MONOTONIC_COARSE
  344. void
  345. monotime_coarse_get(monotime_coarse_t *out)
  346. {
  347. #ifdef TOR_UNIT_TESTS
  348. if (monotime_mocking_enabled) {
  349. out->ts_.tv_sec = (time_t) (mock_time_nsec_coarse / ONE_BILLION);
  350. out->ts_.tv_nsec = (int) (mock_time_nsec_coarse % ONE_BILLION);
  351. return;
  352. }
  353. #endif /* defined(TOR_UNIT_TESTS) */
  354. int r = clock_gettime(clock_monotonic_coarse, &out->ts_);
  355. if (PREDICT_UNLIKELY(r < 0) &&
  356. errno == EINVAL &&
  357. clock_monotonic_coarse == CLOCK_MONOTONIC_COARSE) {
  358. /* We should have caught this at startup in monotime_init_internal!
  359. */
  360. log_warn(LD_BUG, "Falling back to non-coarse monotonic time %s initial "
  361. "system start?", monotime_initialized?"after":"without");
  362. clock_monotonic_coarse = CLOCK_MONOTONIC;
  363. r = clock_gettime(clock_monotonic_coarse, &out->ts_);
  364. }
  365. tor_assert(r == 0);
  366. }
  367. #endif /* defined(CLOCK_MONOTONIC_COARSE) */
  368. int64_t
  369. monotime_diff_nsec(const monotime_t *start,
  370. const monotime_t *end)
  371. {
  372. const int64_t diff_sec = end->ts_.tv_sec - start->ts_.tv_sec;
  373. const int64_t diff_nsec = diff_sec * ONE_BILLION +
  374. (end->ts_.tv_nsec - start->ts_.tv_nsec);
  375. return diff_nsec;
  376. }
  377. int32_t
  378. monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
  379. const monotime_coarse_t *end)
  380. {
  381. const int32_t diff_sec = (int32_t)(end->ts_.tv_sec - start->ts_.tv_sec);
  382. const int32_t diff_nsec = (int32_t)(end->ts_.tv_nsec - start->ts_.tv_nsec);
  383. return diff_sec * 1000 + diff_nsec / ONE_MILLION;
  384. }
  385. /* This value is ONE_BILLION >> 20. */
  386. static const uint32_t STAMP_TICKS_PER_SECOND = 953;
  387. uint32_t
  388. monotime_coarse_to_stamp(const monotime_coarse_t *t)
  389. {
  390. uint32_t nsec = (uint32_t)t->ts_.tv_nsec;
  391. uint32_t sec = (uint32_t)t->ts_.tv_sec;
  392. return (sec * STAMP_TICKS_PER_SECOND) + (nsec >> 20);
  393. }
  394. int
  395. monotime_is_zero(const monotime_t *val)
  396. {
  397. return val->ts_.tv_sec == 0 && val->ts_.tv_nsec == 0;
  398. }
  399. void
  400. monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec)
  401. {
  402. const uint32_t sec = msec / 1000;
  403. const uint32_t msec_remainder = msec % 1000;
  404. out->ts_.tv_sec = val->ts_.tv_sec + sec;
  405. out->ts_.tv_nsec = val->ts_.tv_nsec + (msec_remainder * ONE_MILLION);
  406. if (out->ts_.tv_nsec > ONE_BILLION) {
  407. out->ts_.tv_nsec -= ONE_BILLION;
  408. out->ts_.tv_sec += 1;
  409. }
  410. }
  411. /* end of "HAVE_CLOCK_GETTIME" */
  412. #elif defined (_WIN32)
  413. /** Result of QueryPerformanceFrequency, in terms needed to
  414. * convert ticks to nanoseconds. */
  415. static int64_t nsec_per_tick_numer = 1;
  416. static int64_t nsec_per_tick_denom = 1;
  417. /** Lock to protect last_pctr and pctr_offset */
  418. static CRITICAL_SECTION monotime_lock;
  419. /** Lock to protect rollover_count and last_tick_count */
  420. static CRITICAL_SECTION monotime_coarse_lock;
  421. typedef ULONGLONG (WINAPI *GetTickCount64_fn_t)(void);
  422. static GetTickCount64_fn_t GetTickCount64_fn = NULL;
  423. static void
  424. monotime_init_internal(void)
  425. {
  426. tor_assert(!monotime_initialized);
  427. BOOL ok = InitializeCriticalSectionAndSpinCount(&monotime_lock, 200);
  428. tor_assert(ok);
  429. ok = InitializeCriticalSectionAndSpinCount(&monotime_coarse_lock, 200);
  430. tor_assert(ok);
  431. LARGE_INTEGER li;
  432. ok = QueryPerformanceFrequency(&li);
  433. tor_assert(ok);
  434. tor_assert(li.QuadPart);
  435. uint64_t n = ONE_BILLION;
  436. uint64_t d = li.QuadPart;
  437. /* We need to simplify this or we'll probably overflow the int64. */
  438. simplify_fraction64(&n, &d);
  439. tor_assert(n <= INT64_MAX);
  440. tor_assert(d <= INT64_MAX);
  441. nsec_per_tick_numer = (int64_t) n;
  442. nsec_per_tick_denom = (int64_t) d;
  443. last_pctr = 0;
  444. pctr_offset = 0;
  445. HANDLE h = load_windows_system_library(TEXT("kernel32.dll"));
  446. if (h) {
  447. GetTickCount64_fn = (GetTickCount64_fn_t)
  448. GetProcAddress(h, "GetTickCount64");
  449. }
  450. // FreeLibrary(h) ?
  451. }
  452. void
  453. monotime_get(monotime_t *out)
  454. {
  455. if (BUG(monotime_initialized == 0)) {
  456. monotime_init();
  457. }
  458. #ifdef TOR_UNIT_TESTS
  459. if (monotime_mocking_enabled) {
  460. out->pcount_ = (mock_time_nsec * nsec_per_tick_denom)
  461. / nsec_per_tick_numer;
  462. return;
  463. }
  464. #endif /* defined(TOR_UNIT_TESTS) */
  465. /* Alas, QueryPerformanceCounter is not always monotonic: see bug list at
  466. https://www.python.org/dev/peps/pep-0418/#windows-queryperformancecounter
  467. */
  468. EnterCriticalSection(&monotime_lock);
  469. LARGE_INTEGER res;
  470. BOOL ok = QueryPerformanceCounter(&res);
  471. tor_assert(ok);
  472. const int64_t count_raw = res.QuadPart;
  473. out->pcount_ = ratchet_performance_counter(count_raw);
  474. LeaveCriticalSection(&monotime_lock);
  475. }
  476. void
  477. monotime_coarse_get(monotime_coarse_t *out)
  478. {
  479. #ifdef TOR_UNIT_TESTS
  480. if (monotime_mocking_enabled) {
  481. out->tick_count_ = mock_time_nsec_coarse / ONE_MILLION;
  482. return;
  483. }
  484. #endif /* defined(TOR_UNIT_TESTS) */
  485. if (GetTickCount64_fn) {
  486. out->tick_count_ = (int64_t)GetTickCount64_fn();
  487. } else {
  488. EnterCriticalSection(&monotime_coarse_lock);
  489. DWORD tick = GetTickCount();
  490. out->tick_count_ = ratchet_coarse_performance_counter(tick);
  491. LeaveCriticalSection(&monotime_coarse_lock);
  492. }
  493. }
  494. int64_t
  495. monotime_diff_nsec(const monotime_t *start,
  496. const monotime_t *end)
  497. {
  498. if (BUG(monotime_initialized == 0)) {
  499. monotime_init();
  500. }
  501. const int64_t diff_ticks = end->pcount_ - start->pcount_;
  502. return (diff_ticks * nsec_per_tick_numer) / nsec_per_tick_denom;
  503. }
  504. int64_t
  505. monotime_coarse_diff_msec(const monotime_coarse_t *start,
  506. const monotime_coarse_t *end)
  507. {
  508. const int64_t diff_ticks = end->tick_count_ - start->tick_count_;
  509. return diff_ticks;
  510. }
  511. int32_t
  512. monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
  513. const monotime_coarse_t *end)
  514. {
  515. return (int32_t)monotime_coarse_diff_msec(start, end);
  516. }
  517. int64_t
  518. monotime_coarse_diff_usec(const monotime_coarse_t *start,
  519. const monotime_coarse_t *end)
  520. {
  521. return monotime_coarse_diff_msec(start, end) * 1000;
  522. }
  523. int64_t
  524. monotime_coarse_diff_nsec(const monotime_coarse_t *start,
  525. const monotime_coarse_t *end)
  526. {
  527. return monotime_coarse_diff_msec(start, end) * ONE_MILLION;
  528. }
  529. static const uint32_t STAMP_TICKS_PER_SECOND = 1000;
  530. uint32_t
  531. monotime_coarse_to_stamp(const monotime_coarse_t *t)
  532. {
  533. return (uint32_t) t->tick_count_;
  534. }
  535. int
  536. monotime_is_zero(const monotime_t *val)
  537. {
  538. return val->pcount_ == 0;
  539. }
  540. int
  541. monotime_coarse_is_zero(const monotime_coarse_t *val)
  542. {
  543. return val->tick_count_ == 0;
  544. }
  545. void
  546. monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec)
  547. {
  548. const uint64_t nsec = msec * ONE_MILLION;
  549. const uint64_t ticks = (nsec * nsec_per_tick_denom) / nsec_per_tick_numer;
  550. out->pcount_ = val->pcount_ + ticks;
  551. }
  552. void
  553. monotime_coarse_add_msec(monotime_coarse_t *out, const monotime_coarse_t *val,
  554. uint32_t msec)
  555. {
  556. out->tick_count_ = val->tick_count_ + msec;
  557. }
  558. /* end of "_WIN32" */
  559. #elif defined(MONOTIME_USING_GETTIMEOFDAY)
  560. static tor_mutex_t monotime_lock;
  561. /** Initialize the monotonic timer subsystem. */
  562. static void
  563. monotime_init_internal(void)
  564. {
  565. tor_assert(!monotime_initialized);
  566. tor_mutex_init(&monotime_lock);
  567. }
  568. void
  569. monotime_get(monotime_t *out)
  570. {
  571. if (BUG(monotime_initialized == 0)) {
  572. monotime_init();
  573. }
  574. tor_mutex_acquire(&monotime_lock);
  575. struct timeval timeval_raw;
  576. tor_gettimeofday(&timeval_raw);
  577. ratchet_timeval(&timeval_raw, &out->tv_);
  578. tor_mutex_release(&monotime_lock);
  579. }
  580. int64_t
  581. monotime_diff_nsec(const monotime_t *start,
  582. const monotime_t *end)
  583. {
  584. struct timeval diff;
  585. timersub(&end->tv_, &start->tv_, &diff);
  586. return (diff.tv_sec * ONE_BILLION + diff.tv_usec * 1000);
  587. }
  588. int32_t
  589. monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
  590. const monotime_coarse_t *end)
  591. {
  592. struct timeval diff;
  593. timersub(&end->tv_, &start->tv_, &diff);
  594. return diff.tv_sec * 1000 + diff.tv_usec / 1000;
  595. }
  596. /* This value is ONE_MILLION >> 10. */
  597. static const uint32_t STAMP_TICKS_PER_SECOND = 976;
  598. uint32_t
  599. monotime_coarse_to_stamp(const monotime_coarse_t *t)
  600. {
  601. const uint32_t usec = (uint32_t)t->tv_.tv_usec;
  602. const uint32_t sec = (uint32_t)t->tv_.tv_sec;
  603. return (sec * STAMP_TICKS_PER_SECOND) | (nsec >> 10);
  604. }
  605. int
  606. monotime_is_zero(const monotime_t *val)
  607. {
  608. return val->tv_.tv_sec == 0 && val->tv_.tv_usec == 0;
  609. }
  610. void
  611. monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec)
  612. {
  613. const uint32_t sec = msec / 1000;
  614. const uint32_t msec_remainder = msec % 1000;
  615. out->tv_.tv_sec = val->tv_.tv_sec + sec;
  616. out->tv_.tv_usec = val->tv_.tv_nsec + (msec_remainder * 1000);
  617. if (out->tv_.tv_usec > ONE_MILLION) {
  618. out->tv_.tv_usec -= ONE_MILLION;
  619. out->tv_.tv_sec += 1;
  620. }
  621. }
  622. /* end of "MONOTIME_USING_GETTIMEOFDAY" */
  623. #else
  624. #error "No way to implement monotonic timers."
  625. #endif /* defined(__APPLE__) || ... */
  626. /**
  627. * Initialize the monotonic timer subsystem. Must be called before any
  628. * monotonic timer functions. This function is idempotent.
  629. */
  630. void
  631. monotime_init(void)
  632. {
  633. if (!monotime_initialized) {
  634. monotime_init_internal();
  635. monotime_initialized = 1;
  636. monotime_get(&initialized_at);
  637. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  638. monotime_coarse_get(&initialized_at_coarse);
  639. #endif
  640. }
  641. }
  642. void
  643. monotime_zero(monotime_t *out)
  644. {
  645. memset(out, 0, sizeof(*out));
  646. }
  647. #ifdef MONOTIME_COARSE_TYPE_IS_DIFFERENT
  648. void
  649. monotime_coarse_zero(monotime_coarse_t *out)
  650. {
  651. memset(out, 0, sizeof(*out));
  652. }
  653. #endif
  654. int64_t
  655. monotime_diff_usec(const monotime_t *start,
  656. const monotime_t *end)
  657. {
  658. const int64_t nsec = monotime_diff_nsec(start, end);
  659. return CEIL_DIV(nsec, 1000);
  660. }
  661. int64_t
  662. monotime_diff_msec(const monotime_t *start,
  663. const monotime_t *end)
  664. {
  665. const int64_t nsec = monotime_diff_nsec(start, end);
  666. return CEIL_DIV(nsec, ONE_MILLION);
  667. }
  668. uint64_t
  669. monotime_absolute_nsec(void)
  670. {
  671. monotime_t now;
  672. if (BUG(monotime_initialized == 0)) {
  673. monotime_init();
  674. }
  675. monotime_get(&now);
  676. return monotime_diff_nsec(&initialized_at, &now);
  677. }
  678. uint64_t
  679. monotime_absolute_usec(void)
  680. {
  681. return monotime_absolute_nsec() / 1000;
  682. }
  683. uint64_t
  684. monotime_absolute_msec(void)
  685. {
  686. return monotime_absolute_nsec() / ONE_MILLION;
  687. }
  688. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  689. uint64_t
  690. monotime_coarse_absolute_nsec(void)
  691. {
  692. if (BUG(monotime_initialized == 0)) {
  693. monotime_init();
  694. }
  695. monotime_coarse_t now;
  696. monotime_coarse_get(&now);
  697. return monotime_coarse_diff_nsec(&initialized_at_coarse, &now);
  698. }
  699. uint64_t
  700. monotime_coarse_absolute_usec(void)
  701. {
  702. return monotime_coarse_absolute_nsec() / 1000;
  703. }
  704. uint64_t
  705. monotime_coarse_absolute_msec(void)
  706. {
  707. return monotime_coarse_absolute_nsec() / ONE_MILLION;
  708. }
  709. #else
  710. #define initialized_at_coarse initialized_at
  711. #endif /* defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */
  712. /**
  713. * Return the current time "stamp" as described by monotime_coarse_to_stamp.
  714. */
  715. uint32_t
  716. monotime_coarse_get_stamp(void)
  717. {
  718. monotime_coarse_t now;
  719. monotime_coarse_get(&now);
  720. return monotime_coarse_to_stamp(&now);
  721. }
  722. #ifdef __APPLE__
  723. uint64_t
  724. monotime_coarse_stamp_units_to_approx_msec(uint64_t units)
  725. {
  726. /* Recover as much precision as we can. */
  727. uint64_t abstime_diff = (units << monotime_shift);
  728. return (abstime_diff * mach_time_info.numer) /
  729. (mach_time_info.denom * ONE_MILLION);
  730. }
  731. uint64_t
  732. monotime_msec_to_approx_coarse_stamp_units(uint64_t msec)
  733. {
  734. uint64_t abstime_val =
  735. (((uint64_t)msec) * ONE_MILLION * mach_time_info.denom) /
  736. mach_time_info.numer;
  737. return abstime_val >> monotime_shift;
  738. }
  739. #else
  740. uint64_t
  741. monotime_coarse_stamp_units_to_approx_msec(uint64_t units)
  742. {
  743. return (units * 1000) / STAMP_TICKS_PER_SECOND;
  744. }
  745. uint64_t
  746. monotime_msec_to_approx_coarse_stamp_units(uint64_t msec)
  747. {
  748. return (msec * STAMP_TICKS_PER_SECOND) / 1000;
  749. }
  750. #endif