test_crypto.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2013, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #include "or.h"
  8. #include "test.h"
  9. #include "aes.h"
  10. #include "util.h"
  11. #include "siphash.h"
  12. #ifdef CURVE25519_ENABLED
  13. #include "crypto_curve25519.h"
  14. #endif
  15. #include "crypto_s2k.h"
  16. extern const char AUTHORITY_SIGNKEY_3[];
  17. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  18. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  19. /** Run unit tests for Diffie-Hellman functionality. */
  20. static void
  21. test_crypto_dh(void)
  22. {
  23. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  24. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  25. char p1[DH_BYTES];
  26. char p2[DH_BYTES];
  27. char s1[DH_BYTES];
  28. char s2[DH_BYTES];
  29. ssize_t s1len, s2len;
  30. test_eq(crypto_dh_get_bytes(dh1), DH_BYTES);
  31. test_eq(crypto_dh_get_bytes(dh2), DH_BYTES);
  32. memset(p1, 0, DH_BYTES);
  33. memset(p2, 0, DH_BYTES);
  34. test_memeq(p1, p2, DH_BYTES);
  35. test_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  36. test_memneq(p1, p2, DH_BYTES);
  37. test_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  38. test_memneq(p1, p2, DH_BYTES);
  39. memset(s1, 0, DH_BYTES);
  40. memset(s2, 0xFF, DH_BYTES);
  41. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  42. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  43. test_assert(s1len > 0);
  44. test_eq(s1len, s2len);
  45. test_memeq(s1, s2, s1len);
  46. {
  47. /* XXXX Now fabricate some bad values and make sure they get caught,
  48. * Check 0, 1, N-1, >= N, etc.
  49. */
  50. }
  51. done:
  52. crypto_dh_free(dh1);
  53. crypto_dh_free(dh2);
  54. }
  55. /** Run unit tests for our random number generation function and its wrappers.
  56. */
  57. static void
  58. test_crypto_rng(void)
  59. {
  60. int i, j, allok;
  61. char data1[100], data2[100];
  62. double d;
  63. /* Try out RNG. */
  64. test_assert(! crypto_seed_rng(0));
  65. crypto_rand(data1, 100);
  66. crypto_rand(data2, 100);
  67. test_memneq(data1,data2,100);
  68. allok = 1;
  69. for (i = 0; i < 100; ++i) {
  70. uint64_t big;
  71. char *host;
  72. j = crypto_rand_int(100);
  73. if (j < 0 || j >= 100)
  74. allok = 0;
  75. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  76. if (big >= (U64_LITERAL(1)<<40))
  77. allok = 0;
  78. big = crypto_rand_uint64(U64_LITERAL(5));
  79. if (big >= 5)
  80. allok = 0;
  81. d = crypto_rand_double();
  82. test_assert(d >= 0);
  83. test_assert(d < 1.0);
  84. host = crypto_random_hostname(3,8,"www.",".onion");
  85. if (strcmpstart(host,"www.") ||
  86. strcmpend(host,".onion") ||
  87. strlen(host) < 13 ||
  88. strlen(host) > 18)
  89. allok = 0;
  90. tor_free(host);
  91. }
  92. test_assert(allok);
  93. done:
  94. ;
  95. }
  96. /** Run unit tests for our AES functionality */
  97. static void
  98. test_crypto_aes(void *arg)
  99. {
  100. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  101. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  102. int i, j;
  103. char *mem_op_hex_tmp=NULL;
  104. int use_evp = !strcmp(arg,"evp");
  105. evaluate_evp_for_aes(use_evp);
  106. evaluate_ctr_for_aes();
  107. data1 = tor_malloc(1024);
  108. data2 = tor_malloc(1024);
  109. data3 = tor_malloc(1024);
  110. /* Now, test encryption and decryption with stream cipher. */
  111. data1[0]='\0';
  112. for (i = 1023; i>0; i -= 35)
  113. strncat(data1, "Now is the time for all good onions", i);
  114. memset(data2, 0, 1024);
  115. memset(data3, 0, 1024);
  116. env1 = crypto_cipher_new(NULL);
  117. test_neq_ptr(env1, 0);
  118. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  119. test_neq_ptr(env2, 0);
  120. /* Try encrypting 512 chars. */
  121. crypto_cipher_encrypt(env1, data2, data1, 512);
  122. crypto_cipher_decrypt(env2, data3, data2, 512);
  123. test_memeq(data1, data3, 512);
  124. test_memneq(data1, data2, 512);
  125. /* Now encrypt 1 at a time, and get 1 at a time. */
  126. for (j = 512; j < 560; ++j) {
  127. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  128. }
  129. for (j = 512; j < 560; ++j) {
  130. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  131. }
  132. test_memeq(data1, data3, 560);
  133. /* Now encrypt 3 at a time, and get 5 at a time. */
  134. for (j = 560; j < 1024-5; j += 3) {
  135. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  136. }
  137. for (j = 560; j < 1024-5; j += 5) {
  138. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  139. }
  140. test_memeq(data1, data3, 1024-5);
  141. /* Now make sure that when we encrypt with different chunk sizes, we get
  142. the same results. */
  143. crypto_cipher_free(env2);
  144. env2 = NULL;
  145. memset(data3, 0, 1024);
  146. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  147. test_neq_ptr(env2, NULL);
  148. for (j = 0; j < 1024-16; j += 17) {
  149. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  150. }
  151. for (j= 0; j < 1024-16; ++j) {
  152. if (data2[j] != data3[j]) {
  153. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  154. }
  155. }
  156. test_memeq(data2, data3, 1024-16);
  157. crypto_cipher_free(env1);
  158. env1 = NULL;
  159. crypto_cipher_free(env2);
  160. env2 = NULL;
  161. /* NIST test vector for aes. */
  162. /* IV starts at 0 */
  163. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  164. "\x00\x00\x00\x00\x00\x00\x00\x00");
  165. crypto_cipher_encrypt(env1, data1,
  166. "\x00\x00\x00\x00\x00\x00\x00\x00"
  167. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  168. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  169. /* Now test rollover. All these values are originally from a python
  170. * script. */
  171. crypto_cipher_free(env1);
  172. env1 = crypto_cipher_new_with_iv(
  173. "\x80\x00\x00\x00\x00\x00\x00\x00"
  174. "\x00\x00\x00\x00\x00\x00\x00\x00",
  175. "\x00\x00\x00\x00\x00\x00\x00\x00"
  176. "\xff\xff\xff\xff\xff\xff\xff\xff");
  177. memset(data2, 0, 1024);
  178. crypto_cipher_encrypt(env1, data1, data2, 32);
  179. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  180. "cdd0b917dbc7186908a6bfb5ffd574d3");
  181. crypto_cipher_free(env1);
  182. env1 = crypto_cipher_new_with_iv(
  183. "\x80\x00\x00\x00\x00\x00\x00\x00"
  184. "\x00\x00\x00\x00\x00\x00\x00\x00",
  185. "\x00\x00\x00\x00\xff\xff\xff\xff"
  186. "\xff\xff\xff\xff\xff\xff\xff\xff");
  187. memset(data2, 0, 1024);
  188. crypto_cipher_encrypt(env1, data1, data2, 32);
  189. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  190. "3e63c721df790d2c6469cc1953a3ffac");
  191. crypto_cipher_free(env1);
  192. env1 = crypto_cipher_new_with_iv(
  193. "\x80\x00\x00\x00\x00\x00\x00\x00"
  194. "\x00\x00\x00\x00\x00\x00\x00\x00",
  195. "\xff\xff\xff\xff\xff\xff\xff\xff"
  196. "\xff\xff\xff\xff\xff\xff\xff\xff");
  197. memset(data2, 0, 1024);
  198. crypto_cipher_encrypt(env1, data1, data2, 32);
  199. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  200. "0EDD33D3C621E546455BD8BA1418BEC8");
  201. /* Now check rollover on inplace cipher. */
  202. crypto_cipher_free(env1);
  203. env1 = crypto_cipher_new_with_iv(
  204. "\x80\x00\x00\x00\x00\x00\x00\x00"
  205. "\x00\x00\x00\x00\x00\x00\x00\x00",
  206. "\xff\xff\xff\xff\xff\xff\xff\xff"
  207. "\xff\xff\xff\xff\xff\xff\xff\xff");
  208. crypto_cipher_crypt_inplace(env1, data2, 64);
  209. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  210. "0EDD33D3C621E546455BD8BA1418BEC8"
  211. "93e2c5243d6839eac58503919192f7ae"
  212. "1908e67cafa08d508816659c2e693191");
  213. crypto_cipher_free(env1);
  214. env1 = crypto_cipher_new_with_iv(
  215. "\x80\x00\x00\x00\x00\x00\x00\x00"
  216. "\x00\x00\x00\x00\x00\x00\x00\x00",
  217. "\xff\xff\xff\xff\xff\xff\xff\xff"
  218. "\xff\xff\xff\xff\xff\xff\xff\xff");
  219. crypto_cipher_crypt_inplace(env1, data2, 64);
  220. test_assert(tor_mem_is_zero(data2, 64));
  221. done:
  222. tor_free(mem_op_hex_tmp);
  223. if (env1)
  224. crypto_cipher_free(env1);
  225. if (env2)
  226. crypto_cipher_free(env2);
  227. tor_free(data1);
  228. tor_free(data2);
  229. tor_free(data3);
  230. }
  231. /** Run unit tests for our SHA-1 functionality */
  232. static void
  233. test_crypto_sha(void)
  234. {
  235. crypto_digest_t *d1 = NULL, *d2 = NULL;
  236. int i;
  237. char key[160];
  238. char digest[32];
  239. char data[50];
  240. char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
  241. char *mem_op_hex_tmp=NULL;
  242. /* Test SHA-1 with a test vector from the specification. */
  243. i = crypto_digest(data, "abc", 3);
  244. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  245. tt_int_op(i, ==, 0);
  246. /* Test SHA-256 with a test vector from the specification. */
  247. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  248. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  249. "96177A9CB410FF61F20015AD");
  250. tt_int_op(i, ==, 0);
  251. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  252. /* Case empty (wikipedia) */
  253. crypto_hmac_sha256(digest, "", 0, "", 0);
  254. test_streq(hex_str(digest, 32),
  255. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  256. /* Case quick-brown (wikipedia) */
  257. crypto_hmac_sha256(digest, "key", 3,
  258. "The quick brown fox jumps over the lazy dog", 43);
  259. test_streq(hex_str(digest, 32),
  260. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  261. /* "Test Case 1" from RFC 4231 */
  262. memset(key, 0x0b, 20);
  263. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  264. test_memeq_hex(digest,
  265. "b0344c61d8db38535ca8afceaf0bf12b"
  266. "881dc200c9833da726e9376c2e32cff7");
  267. /* "Test Case 2" from RFC 4231 */
  268. memset(key, 0x0b, 20);
  269. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  270. test_memeq_hex(digest,
  271. "5bdcc146bf60754e6a042426089575c7"
  272. "5a003f089d2739839dec58b964ec3843");
  273. /* "Test case 3" from RFC 4231 */
  274. memset(key, 0xaa, 20);
  275. memset(data, 0xdd, 50);
  276. crypto_hmac_sha256(digest, key, 20, data, 50);
  277. test_memeq_hex(digest,
  278. "773ea91e36800e46854db8ebd09181a7"
  279. "2959098b3ef8c122d9635514ced565fe");
  280. /* "Test case 4" from RFC 4231 */
  281. base16_decode(key, 25,
  282. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  283. memset(data, 0xcd, 50);
  284. crypto_hmac_sha256(digest, key, 25, data, 50);
  285. test_memeq_hex(digest,
  286. "82558a389a443c0ea4cc819899f2083a"
  287. "85f0faa3e578f8077a2e3ff46729665b");
  288. /* "Test case 5" from RFC 4231 */
  289. memset(key, 0x0c, 20);
  290. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  291. test_memeq_hex(digest,
  292. "a3b6167473100ee06e0c796c2955552b");
  293. /* "Test case 6" from RFC 4231 */
  294. memset(key, 0xaa, 131);
  295. crypto_hmac_sha256(digest, key, 131,
  296. "Test Using Larger Than Block-Size Key - Hash Key First",
  297. 54);
  298. test_memeq_hex(digest,
  299. "60e431591ee0b67f0d8a26aacbf5b77f"
  300. "8e0bc6213728c5140546040f0ee37f54");
  301. /* "Test case 7" from RFC 4231 */
  302. memset(key, 0xaa, 131);
  303. crypto_hmac_sha256(digest, key, 131,
  304. "This is a test using a larger than block-size key and a "
  305. "larger than block-size data. The key needs to be hashed "
  306. "before being used by the HMAC algorithm.", 152);
  307. test_memeq_hex(digest,
  308. "9b09ffa71b942fcb27635fbcd5b0e944"
  309. "bfdc63644f0713938a7f51535c3a35e2");
  310. /* Incremental digest code. */
  311. d1 = crypto_digest_new();
  312. test_assert(d1);
  313. crypto_digest_add_bytes(d1, "abcdef", 6);
  314. d2 = crypto_digest_dup(d1);
  315. test_assert(d2);
  316. crypto_digest_add_bytes(d2, "ghijkl", 6);
  317. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  318. crypto_digest(d_out2, "abcdefghijkl", 12);
  319. test_memeq(d_out1, d_out2, DIGEST_LEN);
  320. crypto_digest_assign(d2, d1);
  321. crypto_digest_add_bytes(d2, "mno", 3);
  322. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  323. crypto_digest(d_out2, "abcdefmno", 9);
  324. test_memeq(d_out1, d_out2, DIGEST_LEN);
  325. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  326. crypto_digest(d_out2, "abcdef", 6);
  327. test_memeq(d_out1, d_out2, DIGEST_LEN);
  328. crypto_digest_free(d1);
  329. crypto_digest_free(d2);
  330. /* Incremental digest code with sha256 */
  331. d1 = crypto_digest256_new(DIGEST_SHA256);
  332. test_assert(d1);
  333. crypto_digest_add_bytes(d1, "abcdef", 6);
  334. d2 = crypto_digest_dup(d1);
  335. test_assert(d2);
  336. crypto_digest_add_bytes(d2, "ghijkl", 6);
  337. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  338. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  339. test_memeq(d_out1, d_out2, DIGEST_LEN);
  340. crypto_digest_assign(d2, d1);
  341. crypto_digest_add_bytes(d2, "mno", 3);
  342. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  343. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  344. test_memeq(d_out1, d_out2, DIGEST_LEN);
  345. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  346. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  347. test_memeq(d_out1, d_out2, DIGEST_LEN);
  348. done:
  349. if (d1)
  350. crypto_digest_free(d1);
  351. if (d2)
  352. crypto_digest_free(d2);
  353. tor_free(mem_op_hex_tmp);
  354. }
  355. /** Run unit tests for our public key crypto functions */
  356. static void
  357. test_crypto_pk(void)
  358. {
  359. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  360. char *encoded = NULL;
  361. char data1[1024], data2[1024], data3[1024];
  362. size_t size;
  363. int i, len;
  364. /* Public-key ciphers */
  365. pk1 = pk_generate(0);
  366. pk2 = crypto_pk_new();
  367. test_assert(pk1 && pk2);
  368. test_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  369. test_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  370. test_eq(0, crypto_pk_cmp_keys(pk1, pk2));
  371. /* comparison between keys and NULL */
  372. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), <, 0);
  373. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), ==, 0);
  374. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), >, 0);
  375. test_eq(128, crypto_pk_keysize(pk1));
  376. test_eq(1024, crypto_pk_num_bits(pk1));
  377. test_eq(128, crypto_pk_keysize(pk2));
  378. test_eq(1024, crypto_pk_num_bits(pk2));
  379. test_eq(128, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  380. "Hello whirled.", 15,
  381. PK_PKCS1_OAEP_PADDING));
  382. test_eq(128, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  383. "Hello whirled.", 15,
  384. PK_PKCS1_OAEP_PADDING));
  385. /* oaep padding should make encryption not match */
  386. test_memneq(data1, data2, 128);
  387. test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  388. PK_PKCS1_OAEP_PADDING,1));
  389. test_streq(data3, "Hello whirled.");
  390. memset(data3, 0, 1024);
  391. test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  392. PK_PKCS1_OAEP_PADDING,1));
  393. test_streq(data3, "Hello whirled.");
  394. /* Can't decrypt with public key. */
  395. test_eq(-1, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  396. PK_PKCS1_OAEP_PADDING,1));
  397. /* Try again with bad padding */
  398. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  399. test_eq(-1, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  400. PK_PKCS1_OAEP_PADDING,1));
  401. /* File operations: save and load private key */
  402. test_assert(! crypto_pk_write_private_key_to_filename(pk1,
  403. get_fname("pkey1")));
  404. /* failing case for read: can't read. */
  405. test_assert(crypto_pk_read_private_key_from_filename(pk2,
  406. get_fname("xyzzy")) < 0);
  407. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  408. /* Failing case for read: no key. */
  409. test_assert(crypto_pk_read_private_key_from_filename(pk2,
  410. get_fname("xyzzy")) < 0);
  411. test_assert(! crypto_pk_read_private_key_from_filename(pk2,
  412. get_fname("pkey1")));
  413. test_eq(15, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  414. PK_PKCS1_OAEP_PADDING,1));
  415. /* Now try signing. */
  416. strlcpy(data1, "Ossifrage", 1024);
  417. test_eq(128, crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  418. test_eq(10,
  419. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  420. test_streq(data3, "Ossifrage");
  421. /* Try signing digests. */
  422. test_eq(128, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  423. data1, 10));
  424. test_eq(20,
  425. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  426. test_eq(0, crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  427. test_eq(-1, crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  428. /*XXXX test failed signing*/
  429. /* Try encoding */
  430. crypto_pk_free(pk2);
  431. pk2 = NULL;
  432. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  433. test_assert(i>0);
  434. pk2 = crypto_pk_asn1_decode(data1, i);
  435. test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  436. /* Try with hybrid encryption wrappers. */
  437. crypto_rand(data1, 1024);
  438. for (i = 85; i < 140; ++i) {
  439. memset(data2,0,1024);
  440. memset(data3,0,1024);
  441. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  442. data1,i,PK_PKCS1_OAEP_PADDING,0);
  443. test_assert(len>=0);
  444. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  445. data2,len,PK_PKCS1_OAEP_PADDING,1);
  446. test_eq(len,i);
  447. test_memeq(data1,data3,i);
  448. }
  449. /* Try copy_full */
  450. crypto_pk_free(pk2);
  451. pk2 = crypto_pk_copy_full(pk1);
  452. test_assert(pk2 != NULL);
  453. test_neq_ptr(pk1, pk2);
  454. test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  455. done:
  456. if (pk1)
  457. crypto_pk_free(pk1);
  458. if (pk2)
  459. crypto_pk_free(pk2);
  460. tor_free(encoded);
  461. }
  462. static void
  463. test_crypto_pk_fingerprints(void *arg)
  464. {
  465. crypto_pk_t *pk = NULL;
  466. char encoded[512];
  467. char d[DIGEST_LEN], d2[DIGEST_LEN];
  468. char fingerprint[FINGERPRINT_LEN+1];
  469. int n;
  470. unsigned i;
  471. char *mem_op_hex_tmp=NULL;
  472. (void)arg;
  473. pk = pk_generate(1);
  474. tt_assert(pk);
  475. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  476. tt_int_op(n, >, 0);
  477. tt_int_op(n, >, 128);
  478. tt_int_op(n, <, 256);
  479. /* Is digest as expected? */
  480. crypto_digest(d, encoded, n);
  481. tt_int_op(0, ==, crypto_pk_get_digest(pk, d2));
  482. test_memeq(d, d2, DIGEST_LEN);
  483. /* Is fingerprint right? */
  484. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  485. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  486. test_memeq_hex(d, fingerprint);
  487. /* Are spaces right? */
  488. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  489. for (i = 4; i < strlen(fingerprint); i += 5) {
  490. tt_int_op(fingerprint[i], ==, ' ');
  491. }
  492. tor_strstrip(fingerprint, " ");
  493. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  494. test_memeq_hex(d, fingerprint);
  495. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  496. crypto_digest(d2, d, sizeof(d));
  497. tt_int_op(0, ==, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  498. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  499. test_memeq_hex(d2, fingerprint);
  500. done:
  501. crypto_pk_free(pk);
  502. tor_free(mem_op_hex_tmp);
  503. }
  504. /** Sanity check for crypto pk digests */
  505. static void
  506. test_crypto_digests(void)
  507. {
  508. crypto_pk_t *k = NULL;
  509. ssize_t r;
  510. digests_t pkey_digests;
  511. char digest[DIGEST_LEN];
  512. k = crypto_pk_new();
  513. test_assert(k);
  514. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  515. test_assert(!r);
  516. r = crypto_pk_get_digest(k, digest);
  517. test_assert(r == 0);
  518. test_memeq(hex_str(digest, DIGEST_LEN),
  519. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  520. r = crypto_pk_get_all_digests(k, &pkey_digests);
  521. test_memeq(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),
  522. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  523. test_memeq(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),
  524. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  525. done:
  526. crypto_pk_free(k);
  527. }
  528. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  529. * fingerprints, etc) */
  530. static void
  531. test_crypto_formats(void)
  532. {
  533. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  534. int i, j, idx;
  535. data1 = tor_malloc(1024);
  536. data2 = tor_malloc(1024);
  537. data3 = tor_malloc(1024);
  538. test_assert(data1 && data2 && data3);
  539. /* Base64 tests */
  540. memset(data1, 6, 1024);
  541. for (idx = 0; idx < 10; ++idx) {
  542. i = base64_encode(data2, 1024, data1, idx);
  543. test_assert(i >= 0);
  544. j = base64_decode(data3, 1024, data2, i);
  545. test_eq(j,idx);
  546. test_memeq(data3, data1, idx);
  547. }
  548. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  549. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  550. i = base64_encode(data2, 1024, data1, 71);
  551. test_assert(i >= 0);
  552. j = base64_decode(data3, 1024, data2, i);
  553. test_eq(j, 71);
  554. test_streq(data3, data1);
  555. test_assert(data2[i] == '\0');
  556. crypto_rand(data1, DIGEST_LEN);
  557. memset(data2, 100, 1024);
  558. digest_to_base64(data2, data1);
  559. test_eq(BASE64_DIGEST_LEN, strlen(data2));
  560. test_eq(100, data2[BASE64_DIGEST_LEN+2]);
  561. memset(data3, 99, 1024);
  562. test_eq(digest_from_base64(data3, data2), 0);
  563. test_memeq(data1, data3, DIGEST_LEN);
  564. test_eq(99, data3[DIGEST_LEN+1]);
  565. test_assert(digest_from_base64(data3, "###") < 0);
  566. /* Encoding SHA256 */
  567. crypto_rand(data2, DIGEST256_LEN);
  568. memset(data2, 100, 1024);
  569. digest256_to_base64(data2, data1);
  570. test_eq(BASE64_DIGEST256_LEN, strlen(data2));
  571. test_eq(100, data2[BASE64_DIGEST256_LEN+2]);
  572. memset(data3, 99, 1024);
  573. test_eq(digest256_from_base64(data3, data2), 0);
  574. test_memeq(data1, data3, DIGEST256_LEN);
  575. test_eq(99, data3[DIGEST256_LEN+1]);
  576. /* Base32 tests */
  577. strlcpy(data1, "5chrs", 1024);
  578. /* bit pattern is: [35 63 68 72 73] ->
  579. * [00110101 01100011 01101000 01110010 01110011]
  580. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  581. */
  582. base32_encode(data2, 9, data1, 5);
  583. test_streq(data2, "gvrwq4tt");
  584. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  585. base32_encode(data2, 30, data1, 10);
  586. test_streq(data2, "772w2rfobvomsywe");
  587. /* Base16 tests */
  588. strlcpy(data1, "6chrs\xff", 1024);
  589. base16_encode(data2, 13, data1, 6);
  590. test_streq(data2, "3663687273FF");
  591. strlcpy(data1, "f0d678affc000100", 1024);
  592. i = base16_decode(data2, 8, data1, 16);
  593. test_eq(i,0);
  594. test_memeq(data2, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  595. /* now try some failing base16 decodes */
  596. test_eq(-1, base16_decode(data2, 8, data1, 15)); /* odd input len */
  597. test_eq(-1, base16_decode(data2, 7, data1, 16)); /* dest too short */
  598. strlcpy(data1, "f0dz!8affc000100", 1024);
  599. test_eq(-1, base16_decode(data2, 8, data1, 16));
  600. tor_free(data1);
  601. tor_free(data2);
  602. tor_free(data3);
  603. /* Add spaces to fingerprint */
  604. {
  605. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  606. test_eq(strlen(data1), 40);
  607. data2 = tor_malloc(FINGERPRINT_LEN+1);
  608. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  609. test_streq(data2, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  610. tor_free(data1);
  611. tor_free(data2);
  612. }
  613. done:
  614. tor_free(data1);
  615. tor_free(data2);
  616. tor_free(data3);
  617. }
  618. /** Run unit tests for our secret-to-key passphrase hashing functionality. */
  619. static void
  620. test_crypto_s2k_rfc2440(void)
  621. {
  622. char buf[29];
  623. char buf2[29];
  624. char *buf3 = NULL;
  625. int i;
  626. memset(buf, 0, sizeof(buf));
  627. memset(buf2, 0, sizeof(buf2));
  628. buf3 = tor_malloc(65536);
  629. memset(buf3, 0, 65536);
  630. secret_to_key_rfc2440(buf+9, 20, "", 0, buf);
  631. crypto_digest(buf2+9, buf3, 1024);
  632. test_memeq(buf, buf2, 29);
  633. memcpy(buf,"vrbacrda",8);
  634. memcpy(buf2,"vrbacrda",8);
  635. buf[8] = 96;
  636. buf2[8] = 96;
  637. secret_to_key_rfc2440(buf+9, 20, "12345678", 8, buf);
  638. for (i = 0; i < 65536; i += 16) {
  639. memcpy(buf3+i, "vrbacrda12345678", 16);
  640. }
  641. crypto_digest(buf2+9, buf3, 65536);
  642. test_memeq(buf, buf2, 29);
  643. done:
  644. tor_free(buf3);
  645. }
  646. static void
  647. run_s2k_tests(const unsigned flags, const unsigned type,
  648. int speclen, const int keylen, int legacy)
  649. {
  650. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN], buf3[S2K_MAXLEN];
  651. int r;
  652. size_t sz;
  653. const char pw1[] = "You can't come in here unless you say swordfish!";
  654. const char pw2[] = "Now, I give you one more guess.";
  655. r = secret_to_key_new(buf, sizeof(buf), &sz,
  656. pw1, strlen(pw1), flags);
  657. tt_int_op(r, ==, S2K_OKAY);
  658. tt_int_op(buf[0], ==, type);
  659. tt_int_op(sz, ==, keylen + speclen);
  660. if (legacy) {
  661. memmove(buf, buf+1, sz-1);
  662. --sz;
  663. --speclen;
  664. }
  665. tt_int_op(S2K_OKAY, ==,
  666. secret_to_key_check(buf, sz, pw1, strlen(pw1)));
  667. tt_int_op(S2K_BAD_SECRET, ==,
  668. secret_to_key_check(buf, sz, pw2, strlen(pw2)));
  669. /* Move key to buf2, and clear it. */
  670. memset(buf3, 0, sizeof(buf3));
  671. memcpy(buf2, buf+speclen, keylen);
  672. memset(buf+speclen, 0, sz - speclen);
  673. /* Derivekey should produce the same results. */
  674. tt_int_op(S2K_OKAY, ==,
  675. secret_to_key_derivekey(buf3, keylen, buf, speclen, pw1, strlen(pw1)));
  676. tt_mem_op(buf2, ==, buf3, keylen);
  677. /* Derivekey with a longer output should fill the output. */
  678. memset(buf2, 0, sizeof(buf2));
  679. tt_int_op(S2K_OKAY, ==,
  680. secret_to_key_derivekey(buf2, sizeof(buf2), buf, speclen,
  681. pw1, strlen(pw1)));
  682. tt_mem_op(buf2, !=, buf3, keylen);
  683. memset(buf3, 0, sizeof(buf3));
  684. tt_int_op(S2K_OKAY, ==,
  685. secret_to_key_derivekey(buf3, sizeof(buf3), buf, speclen,
  686. pw1, strlen(pw1)));
  687. tt_mem_op(buf2, ==, buf3, sizeof(buf3));
  688. tt_assert(!tor_mem_is_zero((char*)buf2+keylen, sizeof(buf2)-keylen));
  689. done:
  690. ;
  691. }
  692. static void
  693. test_crypto_s2k_general(void *arg)
  694. {
  695. const char *which = arg;
  696. if (!strcmp(which, "scrypt")) {
  697. run_s2k_tests(0, 2, 19, 32, 0);
  698. } else if (!strcmp(which, "scrypt-low")) {
  699. run_s2k_tests(S2K_FLAG_LOW_MEM, 2, 19, 32, 0);
  700. } else if (!strcmp(which, "pbkdf2")) {
  701. run_s2k_tests(S2K_FLAG_USE_PBKDF2, 1, 18, 20, 0);
  702. } else if (!strcmp(which, "rfc2440")) {
  703. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 0);
  704. } else if (!strcmp(which, "rfc2440-legacy")) {
  705. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 1);
  706. } else {
  707. tt_fail();
  708. }
  709. }
  710. static void
  711. test_crypto_s2k_errors(void *arg)
  712. {
  713. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN];
  714. size_t sz;
  715. (void)arg;
  716. /* Bogus specifiers: simple */
  717. tt_int_op(S2K_BAD_LEN, ==,
  718. secret_to_key_derivekey(buf, sizeof(buf),
  719. (const uint8_t*)"", 0, "ABC", 3));
  720. tt_int_op(S2K_BAD_ALGORITHM, ==,
  721. secret_to_key_derivekey(buf, sizeof(buf),
  722. (const uint8_t*)"\x10", 1, "ABC", 3));
  723. tt_int_op(S2K_BAD_LEN, ==,
  724. secret_to_key_derivekey(buf, sizeof(buf),
  725. (const uint8_t*)"\x01\x02", 2, "ABC", 3));
  726. tt_int_op(S2K_BAD_LEN, ==,
  727. secret_to_key_check((const uint8_t*)"", 0, "ABC", 3));
  728. tt_int_op(S2K_BAD_ALGORITHM, ==,
  729. secret_to_key_check((const uint8_t*)"\x10", 1, "ABC", 3));
  730. tt_int_op(S2K_BAD_LEN, ==,
  731. secret_to_key_check((const uint8_t*)"\x01\x02", 2, "ABC", 3));
  732. /* too long gets "BAD_LEN" too */
  733. memset(buf, 0, sizeof(buf));
  734. buf[0] = 2;
  735. tt_int_op(S2K_BAD_LEN, ==,
  736. secret_to_key_derivekey(buf2, sizeof(buf2),
  737. buf, sizeof(buf), "ABC", 3));
  738. /* Truncated output */
  739. #ifdef HAVE_LIBSCRYPT_H
  740. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  741. "ABC", 3, 0));
  742. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  743. "ABC", 3, S2K_FLAG_LOW_MEM));
  744. #endif
  745. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 37, &sz,
  746. "ABC", 3, S2K_FLAG_USE_PBKDF2));
  747. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 29, &sz,
  748. "ABC", 3, S2K_FLAG_NO_SCRYPT));
  749. #ifdef HAVE_LIBSCRYPT_H
  750. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18, 0));
  751. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18,
  752. S2K_FLAG_LOW_MEM));
  753. #endif
  754. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 17,
  755. S2K_FLAG_USE_PBKDF2));
  756. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 9,
  757. S2K_FLAG_NO_SCRYPT));
  758. /* Now try using type-specific bogus specifiers. */
  759. /* It's a bad pbkdf2 buffer if it has an iteration count that would overflow
  760. * int32_t. */
  761. memset(buf, 0, sizeof(buf));
  762. buf[0] = 1; /* pbkdf2 */
  763. buf[17] = 100; /* 1<<100 is much bigger than INT32_MAX */
  764. tt_int_op(S2K_BAD_PARAMS, ==,
  765. secret_to_key_derivekey(buf2, sizeof(buf2),
  766. buf, 18, "ABC", 3));
  767. #ifdef HAVE_LIBSCRYPT_H
  768. /* It's a bad scrypt buffer if N would overflow uint64 */
  769. memset(buf, 0, sizeof(buf));
  770. buf[0] = 2; /* scrypt */
  771. buf[17] = 100; /* 1<<100 is much bigger than UINT64_MAX */
  772. tt_int_op(S2K_BAD_PARAMS, ==,
  773. secret_to_key_derivekey(buf2, sizeof(buf2),
  774. buf, 19, "ABC", 3));
  775. #endif
  776. done:
  777. ;
  778. }
  779. /** Test AES-CTR encryption and decryption with IV. */
  780. static void
  781. test_crypto_aes_iv(void *arg)
  782. {
  783. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  784. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  785. char key1[16], key2[16];
  786. ssize_t encrypted_size, decrypted_size;
  787. int use_evp = !strcmp(arg,"evp");
  788. evaluate_evp_for_aes(use_evp);
  789. plain = tor_malloc(4095);
  790. encrypted1 = tor_malloc(4095 + 1 + 16);
  791. encrypted2 = tor_malloc(4095 + 1 + 16);
  792. decrypted1 = tor_malloc(4095 + 1);
  793. decrypted2 = tor_malloc(4095 + 1);
  794. crypto_rand(plain, 4095);
  795. crypto_rand(key1, 16);
  796. crypto_rand(key2, 16);
  797. crypto_rand(plain_1, 1);
  798. crypto_rand(plain_15, 15);
  799. crypto_rand(plain_16, 16);
  800. crypto_rand(plain_17, 17);
  801. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  802. /* Encrypt and decrypt with the same key. */
  803. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  804. plain, 4095);
  805. test_eq(encrypted_size, 16 + 4095);
  806. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  807. * greater than 0, but its truth is not
  808. * obvious to all analysis tools. */
  809. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  810. encrypted1, encrypted_size);
  811. test_eq(decrypted_size, 4095);
  812. tt_assert(decrypted_size > 0);
  813. test_memeq(plain, decrypted1, 4095);
  814. /* Encrypt a second time (with a new random initialization vector). */
  815. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  816. plain, 4095);
  817. test_eq(encrypted_size, 16 + 4095);
  818. tt_assert(encrypted_size > 0);
  819. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  820. encrypted2, encrypted_size);
  821. test_eq(decrypted_size, 4095);
  822. tt_assert(decrypted_size > 0);
  823. test_memeq(plain, decrypted2, 4095);
  824. test_memneq(encrypted1, encrypted2, encrypted_size);
  825. /* Decrypt with the wrong key. */
  826. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  827. encrypted1, encrypted_size);
  828. test_eq(decrypted_size, 4095);
  829. test_memneq(plain, decrypted2, decrypted_size);
  830. /* Alter the initialization vector. */
  831. encrypted1[0] += 42;
  832. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  833. encrypted1, encrypted_size);
  834. test_eq(decrypted_size, 4095);
  835. test_memneq(plain, decrypted2, 4095);
  836. /* Special length case: 1. */
  837. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  838. plain_1, 1);
  839. test_eq(encrypted_size, 16 + 1);
  840. tt_assert(encrypted_size > 0);
  841. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  842. encrypted1, encrypted_size);
  843. test_eq(decrypted_size, 1);
  844. tt_assert(decrypted_size > 0);
  845. test_memeq(plain_1, decrypted1, 1);
  846. /* Special length case: 15. */
  847. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  848. plain_15, 15);
  849. test_eq(encrypted_size, 16 + 15);
  850. tt_assert(encrypted_size > 0);
  851. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  852. encrypted1, encrypted_size);
  853. test_eq(decrypted_size, 15);
  854. tt_assert(decrypted_size > 0);
  855. test_memeq(plain_15, decrypted1, 15);
  856. /* Special length case: 16. */
  857. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  858. plain_16, 16);
  859. test_eq(encrypted_size, 16 + 16);
  860. tt_assert(encrypted_size > 0);
  861. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  862. encrypted1, encrypted_size);
  863. test_eq(decrypted_size, 16);
  864. tt_assert(decrypted_size > 0);
  865. test_memeq(plain_16, decrypted1, 16);
  866. /* Special length case: 17. */
  867. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  868. plain_17, 17);
  869. test_eq(encrypted_size, 16 + 17);
  870. tt_assert(encrypted_size > 0);
  871. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  872. encrypted1, encrypted_size);
  873. test_eq(decrypted_size, 17);
  874. tt_assert(decrypted_size > 0);
  875. test_memeq(plain_17, decrypted1, 17);
  876. done:
  877. /* Free memory. */
  878. tor_free(plain);
  879. tor_free(encrypted1);
  880. tor_free(encrypted2);
  881. tor_free(decrypted1);
  882. tor_free(decrypted2);
  883. }
  884. /** Test base32 decoding. */
  885. static void
  886. test_crypto_base32_decode(void)
  887. {
  888. char plain[60], encoded[96 + 1], decoded[60];
  889. int res;
  890. crypto_rand(plain, 60);
  891. /* Encode and decode a random string. */
  892. base32_encode(encoded, 96 + 1, plain, 60);
  893. res = base32_decode(decoded, 60, encoded, 96);
  894. test_eq(res, 0);
  895. test_memeq(plain, decoded, 60);
  896. /* Encode, uppercase, and decode a random string. */
  897. base32_encode(encoded, 96 + 1, plain, 60);
  898. tor_strupper(encoded);
  899. res = base32_decode(decoded, 60, encoded, 96);
  900. test_eq(res, 0);
  901. test_memeq(plain, decoded, 60);
  902. /* Change encoded string and decode. */
  903. if (encoded[0] == 'A' || encoded[0] == 'a')
  904. encoded[0] = 'B';
  905. else
  906. encoded[0] = 'A';
  907. res = base32_decode(decoded, 60, encoded, 96);
  908. test_eq(res, 0);
  909. test_memneq(plain, decoded, 60);
  910. /* Bad encodings. */
  911. encoded[0] = '!';
  912. res = base32_decode(decoded, 60, encoded, 96);
  913. test_assert(res < 0);
  914. done:
  915. ;
  916. }
  917. static void
  918. test_crypto_kdf_TAP(void *arg)
  919. {
  920. uint8_t key_material[100];
  921. int r;
  922. char *mem_op_hex_tmp = NULL;
  923. (void)arg;
  924. #define EXPAND(s) \
  925. r = crypto_expand_key_material_TAP( \
  926. (const uint8_t*)(s), strlen(s), \
  927. key_material, 100)
  928. /* Test vectors generated with a little python script; feel free to write
  929. * your own. */
  930. memset(key_material, 0, sizeof(key_material));
  931. EXPAND("");
  932. tt_int_op(r, ==, 0);
  933. test_memeq_hex(key_material,
  934. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  935. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  936. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  937. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  938. EXPAND("Tor");
  939. tt_int_op(r, ==, 0);
  940. test_memeq_hex(key_material,
  941. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  942. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  943. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  944. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  945. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  946. tt_int_op(r, ==, 0);
  947. test_memeq_hex(key_material,
  948. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  949. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  950. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  951. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  952. done:
  953. tor_free(mem_op_hex_tmp);
  954. #undef EXPAND
  955. }
  956. static void
  957. test_crypto_hkdf_sha256(void *arg)
  958. {
  959. uint8_t key_material[100];
  960. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  961. const size_t salt_len = strlen((char*)salt);
  962. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  963. const size_t m_expand_len = strlen((char*)m_expand);
  964. int r;
  965. char *mem_op_hex_tmp = NULL;
  966. (void)arg;
  967. #define EXPAND(s) \
  968. r = crypto_expand_key_material_rfc5869_sha256( \
  969. (const uint8_t*)(s), strlen(s), \
  970. salt, salt_len, \
  971. m_expand, m_expand_len, \
  972. key_material, 100)
  973. /* Test vectors generated with ntor_ref.py */
  974. memset(key_material, 0, sizeof(key_material));
  975. EXPAND("");
  976. tt_int_op(r, ==, 0);
  977. test_memeq_hex(key_material,
  978. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  979. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  980. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  981. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  982. EXPAND("Tor");
  983. tt_int_op(r, ==, 0);
  984. test_memeq_hex(key_material,
  985. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  986. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  987. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  988. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  989. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  990. tt_int_op(r, ==, 0);
  991. test_memeq_hex(key_material,
  992. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  993. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  994. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  995. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  996. done:
  997. tor_free(mem_op_hex_tmp);
  998. #undef EXPAND
  999. }
  1000. #ifdef CURVE25519_ENABLED
  1001. static void
  1002. test_crypto_curve25519_impl(void *arg)
  1003. {
  1004. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1005. version 20050915, by D. J. Bernstein, Public domain. */
  1006. const int randomize_high_bit = (arg != NULL);
  1007. #ifdef SLOW_CURVE25519_TEST
  1008. const int loop_max=10000;
  1009. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1010. "7e0329f4dd2819f5f32d130f1296b500";
  1011. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1012. "e0544770bc7de853b38f9100489e3e79";
  1013. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1014. "bd13861475516bc2cd2b6e005e805064";
  1015. #else
  1016. const int loop_max=200;
  1017. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1018. "c6a1037d74cceb3712e9206871dcf654";
  1019. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1020. "8e3ee1a63c7d14274ea5d4c67f065467";
  1021. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1022. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1023. #endif
  1024. unsigned char e1k[32];
  1025. unsigned char e2k[32];
  1026. unsigned char e1e2k[32];
  1027. unsigned char e2e1k[32];
  1028. unsigned char e1[32] = {3};
  1029. unsigned char e2[32] = {5};
  1030. unsigned char k[32] = {9};
  1031. int loop, i;
  1032. char *mem_op_hex_tmp = NULL;
  1033. for (loop = 0; loop < loop_max; ++loop) {
  1034. curve25519_impl(e1k,e1,k);
  1035. curve25519_impl(e2e1k,e2,e1k);
  1036. curve25519_impl(e2k,e2,k);
  1037. if (randomize_high_bit) {
  1038. /* We require that the high bit of the public key be ignored. So if
  1039. * we're doing this variant test, we randomize the high bit of e2k, and
  1040. * make sure that the handshake still works out the same as it would
  1041. * otherwise. */
  1042. uint8_t byte;
  1043. crypto_rand((char*)&byte, 1);
  1044. e2k[31] |= (byte & 0x80);
  1045. }
  1046. curve25519_impl(e1e2k,e1,e2k);
  1047. test_memeq(e1e2k, e2e1k, 32);
  1048. if (loop == loop_max-1) {
  1049. break;
  1050. }
  1051. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1052. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1053. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1054. }
  1055. test_memeq_hex(e1, e1_expected);
  1056. test_memeq_hex(e2k, e2k_expected);
  1057. test_memeq_hex(e1e2k, e1e2k_expected);
  1058. done:
  1059. tor_free(mem_op_hex_tmp);
  1060. }
  1061. static void
  1062. test_crypto_curve25519_wrappers(void *arg)
  1063. {
  1064. curve25519_public_key_t pubkey1, pubkey2;
  1065. curve25519_secret_key_t seckey1, seckey2;
  1066. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1067. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1068. (void)arg;
  1069. /* Test a simple handshake, serializing and deserializing some stuff. */
  1070. curve25519_secret_key_generate(&seckey1, 0);
  1071. curve25519_secret_key_generate(&seckey2, 1);
  1072. curve25519_public_key_generate(&pubkey1, &seckey1);
  1073. curve25519_public_key_generate(&pubkey2, &seckey2);
  1074. test_assert(curve25519_public_key_is_ok(&pubkey1));
  1075. test_assert(curve25519_public_key_is_ok(&pubkey2));
  1076. curve25519_handshake(output1, &seckey1, &pubkey2);
  1077. curve25519_handshake(output2, &seckey2, &pubkey1);
  1078. test_memeq(output1, output2, sizeof(output1));
  1079. done:
  1080. ;
  1081. }
  1082. static void
  1083. test_crypto_curve25519_encode(void *arg)
  1084. {
  1085. curve25519_secret_key_t seckey;
  1086. curve25519_public_key_t key1, key2, key3;
  1087. char buf[64];
  1088. (void)arg;
  1089. curve25519_secret_key_generate(&seckey, 0);
  1090. curve25519_public_key_generate(&key1, &seckey);
  1091. tt_int_op(0, ==, curve25519_public_to_base64(buf, &key1));
  1092. tt_int_op(CURVE25519_BASE64_PADDED_LEN, ==, strlen(buf));
  1093. tt_int_op(0, ==, curve25519_public_from_base64(&key2, buf));
  1094. test_memeq(key1.public_key, key2.public_key, CURVE25519_PUBKEY_LEN);
  1095. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1096. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, ==, strlen(buf));
  1097. tt_int_op(0, ==, curve25519_public_from_base64(&key3, buf));
  1098. test_memeq(key1.public_key, key3.public_key, CURVE25519_PUBKEY_LEN);
  1099. /* Now try bogus parses. */
  1100. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1101. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1102. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1103. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1104. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1105. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1106. done:
  1107. ;
  1108. }
  1109. static void
  1110. test_crypto_curve25519_persist(void *arg)
  1111. {
  1112. curve25519_keypair_t keypair, keypair2;
  1113. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1114. char *tag = NULL;
  1115. char *content = NULL;
  1116. const char *cp;
  1117. struct stat st;
  1118. size_t taglen;
  1119. (void)arg;
  1120. tt_int_op(0,==,curve25519_keypair_generate(&keypair, 0));
  1121. tt_int_op(0,==,curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1122. tt_int_op(0,==,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1123. tt_str_op(tag,==,"testing");
  1124. tor_free(tag);
  1125. test_memeq(keypair.pubkey.public_key,
  1126. keypair2.pubkey.public_key,
  1127. CURVE25519_PUBKEY_LEN);
  1128. test_memeq(keypair.seckey.secret_key,
  1129. keypair2.seckey.secret_key,
  1130. CURVE25519_SECKEY_LEN);
  1131. content = read_file_to_str(fname, RFTS_BIN, &st);
  1132. tt_assert(content);
  1133. taglen = strlen("== c25519v1: testing ==");
  1134. tt_u64_op((uint64_t)st.st_size, ==,
  1135. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1136. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1137. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1138. cp = content + 32;
  1139. test_memeq(keypair.seckey.secret_key,
  1140. cp,
  1141. CURVE25519_SECKEY_LEN);
  1142. cp += CURVE25519_SECKEY_LEN;
  1143. test_memeq(keypair.pubkey.public_key,
  1144. cp,
  1145. CURVE25519_SECKEY_LEN);
  1146. tor_free(fname);
  1147. fname = tor_strdup(get_fname("bogus_keypair"));
  1148. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1149. tor_free(tag);
  1150. content[69] ^= 0xff;
  1151. tt_int_op(0, ==, write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1152. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1153. done:
  1154. tor_free(fname);
  1155. tor_free(content);
  1156. tor_free(tag);
  1157. }
  1158. #endif
  1159. static void
  1160. test_crypto_siphash(void *arg)
  1161. {
  1162. /* From the reference implementation, taking
  1163. k = 00 01 02 ... 0f
  1164. and in = 00; 00 01; 00 01 02; ...
  1165. */
  1166. const uint8_t VECTORS[64][8] =
  1167. {
  1168. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  1169. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  1170. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  1171. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  1172. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  1173. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  1174. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  1175. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  1176. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  1177. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  1178. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  1179. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  1180. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  1181. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  1182. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  1183. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  1184. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  1185. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  1186. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  1187. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  1188. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  1189. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  1190. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  1191. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  1192. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  1193. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  1194. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  1195. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  1196. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  1197. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  1198. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  1199. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  1200. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  1201. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  1202. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  1203. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  1204. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  1205. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  1206. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  1207. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  1208. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  1209. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  1210. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  1211. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  1212. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  1213. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  1214. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  1215. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  1216. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  1217. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  1218. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  1219. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  1220. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  1221. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  1222. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  1223. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  1224. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  1225. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  1226. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  1227. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  1228. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  1229. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  1230. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  1231. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  1232. };
  1233. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  1234. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  1235. uint8_t input[64];
  1236. int i, j;
  1237. (void)arg;
  1238. for (i = 0; i < 64; ++i)
  1239. input[i] = i;
  1240. for (i = 0; i < 64; ++i) {
  1241. uint64_t r = siphash24(input, i, &K);
  1242. for (j = 0; j < 8; ++j) {
  1243. tt_int_op( (r >> (j*8)) & 0xff, ==, VECTORS[i][j]);
  1244. }
  1245. }
  1246. done:
  1247. ;
  1248. }
  1249. static void *
  1250. pass_data_setup_fn(const struct testcase_t *testcase)
  1251. {
  1252. return testcase->setup_data;
  1253. }
  1254. static int
  1255. pass_data_cleanup_fn(const struct testcase_t *testcase, void *ptr)
  1256. {
  1257. (void)ptr;
  1258. (void)testcase;
  1259. return 1;
  1260. }
  1261. static const struct testcase_setup_t pass_data = {
  1262. pass_data_setup_fn, pass_data_cleanup_fn
  1263. };
  1264. #define CRYPTO_LEGACY(name) \
  1265. { #name, legacy_test_helper, 0, &legacy_setup, test_crypto_ ## name }
  1266. struct testcase_t crypto_tests[] = {
  1267. CRYPTO_LEGACY(formats),
  1268. CRYPTO_LEGACY(rng),
  1269. { "aes_AES", test_crypto_aes, TT_FORK, &pass_data, (void*)"aes" },
  1270. { "aes_EVP", test_crypto_aes, TT_FORK, &pass_data, (void*)"evp" },
  1271. CRYPTO_LEGACY(sha),
  1272. CRYPTO_LEGACY(pk),
  1273. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  1274. CRYPTO_LEGACY(digests),
  1275. CRYPTO_LEGACY(dh),
  1276. CRYPTO_LEGACY(s2k_rfc2440),
  1277. #ifdef HAVE_LIBSCRYPT_H
  1278. { "s2k_scrypt", test_crypto_s2k_general, 0, &pass_data,
  1279. (void*)"scrypt" },
  1280. { "s2k_scrypt_low", test_crypto_s2k_general, 0, &pass_data,
  1281. (void*)"scrypt-low" },
  1282. #endif
  1283. { "s2k_pbkdf2", test_crypto_s2k_general, 0, &pass_data,
  1284. (void*)"pbkdf2" },
  1285. { "s2k_rfc2440_general", test_crypto_s2k_general, 0, &pass_data,
  1286. (void*)"rfc2440" },
  1287. { "s2k_rfc2440_legacy", test_crypto_s2k_general, 0, &pass_data,
  1288. (void*)"rfc2440-legacy" },
  1289. { "s2k_errors", test_crypto_s2k_errors, 0, NULL, NULL },
  1290. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"aes" },
  1291. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"evp" },
  1292. CRYPTO_LEGACY(base32_decode),
  1293. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  1294. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  1295. #ifdef CURVE25519_ENABLED
  1296. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  1297. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  1298. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  1299. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  1300. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  1301. #endif
  1302. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  1303. END_OF_TESTCASES
  1304. };