test_crypto.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2013, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #include "or.h"
  8. #include "test.h"
  9. #include "aes.h"
  10. #include "util.h"
  11. #include "siphash.h"
  12. #ifdef CURVE25519_ENABLED
  13. #include "crypto_curve25519.h"
  14. #endif
  15. extern const char AUTHORITY_SIGNKEY_3[];
  16. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  17. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  18. /** Run unit tests for Diffie-Hellman functionality. */
  19. static void
  20. test_crypto_dh(void *arg)
  21. {
  22. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  23. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  24. char p1[DH_BYTES];
  25. char p2[DH_BYTES];
  26. char s1[DH_BYTES];
  27. char s2[DH_BYTES];
  28. ssize_t s1len, s2len;
  29. (void)arg;
  30. tt_int_op(crypto_dh_get_bytes(dh1),==, DH_BYTES);
  31. tt_int_op(crypto_dh_get_bytes(dh2),==, DH_BYTES);
  32. memset(p1, 0, DH_BYTES);
  33. memset(p2, 0, DH_BYTES);
  34. tt_mem_op(p1,==, p2, DH_BYTES);
  35. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  36. tt_mem_op(p1,!=, p2, DH_BYTES);
  37. tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  38. tt_mem_op(p1,!=, p2, DH_BYTES);
  39. memset(s1, 0, DH_BYTES);
  40. memset(s2, 0xFF, DH_BYTES);
  41. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  42. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  43. tt_assert(s1len > 0);
  44. tt_int_op(s1len,==, s2len);
  45. tt_mem_op(s1,==, s2, s1len);
  46. {
  47. /* XXXX Now fabricate some bad values and make sure they get caught,
  48. * Check 0, 1, N-1, >= N, etc.
  49. */
  50. }
  51. done:
  52. crypto_dh_free(dh1);
  53. crypto_dh_free(dh2);
  54. }
  55. /** Run unit tests for our random number generation function and its wrappers.
  56. */
  57. static void
  58. test_crypto_rng(void *arg)
  59. {
  60. int i, j, allok;
  61. char data1[100], data2[100];
  62. double d;
  63. /* Try out RNG. */
  64. (void)arg;
  65. tt_assert(! crypto_seed_rng(0));
  66. crypto_rand(data1, 100);
  67. crypto_rand(data2, 100);
  68. tt_mem_op(data1,!=, data2,100);
  69. allok = 1;
  70. for (i = 0; i < 100; ++i) {
  71. uint64_t big;
  72. char *host;
  73. j = crypto_rand_int(100);
  74. if (j < 0 || j >= 100)
  75. allok = 0;
  76. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  77. if (big >= (U64_LITERAL(1)<<40))
  78. allok = 0;
  79. big = crypto_rand_uint64(U64_LITERAL(5));
  80. if (big >= 5)
  81. allok = 0;
  82. d = crypto_rand_double();
  83. tt_assert(d >= 0);
  84. tt_assert(d < 1.0);
  85. host = crypto_random_hostname(3,8,"www.",".onion");
  86. if (strcmpstart(host,"www.") ||
  87. strcmpend(host,".onion") ||
  88. strlen(host) < 13 ||
  89. strlen(host) > 18)
  90. allok = 0;
  91. tor_free(host);
  92. }
  93. tt_assert(allok);
  94. done:
  95. ;
  96. }
  97. /** Run unit tests for our AES functionality */
  98. static void
  99. test_crypto_aes(void *arg)
  100. {
  101. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  102. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  103. int i, j;
  104. char *mem_op_hex_tmp=NULL;
  105. int use_evp = !strcmp(arg,"evp");
  106. evaluate_evp_for_aes(use_evp);
  107. evaluate_ctr_for_aes();
  108. data1 = tor_malloc(1024);
  109. data2 = tor_malloc(1024);
  110. data3 = tor_malloc(1024);
  111. /* Now, test encryption and decryption with stream cipher. */
  112. data1[0]='\0';
  113. for (i = 1023; i>0; i -= 35)
  114. strncat(data1, "Now is the time for all good onions", i);
  115. memset(data2, 0, 1024);
  116. memset(data3, 0, 1024);
  117. env1 = crypto_cipher_new(NULL);
  118. tt_ptr_op(env1, !=, NULL);
  119. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  120. tt_ptr_op(env2, !=, NULL);
  121. /* Try encrypting 512 chars. */
  122. crypto_cipher_encrypt(env1, data2, data1, 512);
  123. crypto_cipher_decrypt(env2, data3, data2, 512);
  124. tt_mem_op(data1,==, data3, 512);
  125. tt_mem_op(data1,!=, data2, 512);
  126. /* Now encrypt 1 at a time, and get 1 at a time. */
  127. for (j = 512; j < 560; ++j) {
  128. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  129. }
  130. for (j = 512; j < 560; ++j) {
  131. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  132. }
  133. tt_mem_op(data1,==, data3, 560);
  134. /* Now encrypt 3 at a time, and get 5 at a time. */
  135. for (j = 560; j < 1024-5; j += 3) {
  136. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  137. }
  138. for (j = 560; j < 1024-5; j += 5) {
  139. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  140. }
  141. tt_mem_op(data1,==, data3, 1024-5);
  142. /* Now make sure that when we encrypt with different chunk sizes, we get
  143. the same results. */
  144. crypto_cipher_free(env2);
  145. env2 = NULL;
  146. memset(data3, 0, 1024);
  147. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  148. tt_ptr_op(env2, !=, NULL);
  149. for (j = 0; j < 1024-16; j += 17) {
  150. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  151. }
  152. for (j= 0; j < 1024-16; ++j) {
  153. if (data2[j] != data3[j]) {
  154. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  155. }
  156. }
  157. tt_mem_op(data2,==, data3, 1024-16);
  158. crypto_cipher_free(env1);
  159. env1 = NULL;
  160. crypto_cipher_free(env2);
  161. env2 = NULL;
  162. /* NIST test vector for aes. */
  163. /* IV starts at 0 */
  164. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  165. "\x00\x00\x00\x00\x00\x00\x00\x00");
  166. crypto_cipher_encrypt(env1, data1,
  167. "\x00\x00\x00\x00\x00\x00\x00\x00"
  168. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  169. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  170. /* Now test rollover. All these values are originally from a python
  171. * script. */
  172. crypto_cipher_free(env1);
  173. env1 = crypto_cipher_new_with_iv(
  174. "\x80\x00\x00\x00\x00\x00\x00\x00"
  175. "\x00\x00\x00\x00\x00\x00\x00\x00",
  176. "\x00\x00\x00\x00\x00\x00\x00\x00"
  177. "\xff\xff\xff\xff\xff\xff\xff\xff");
  178. memset(data2, 0, 1024);
  179. crypto_cipher_encrypt(env1, data1, data2, 32);
  180. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  181. "cdd0b917dbc7186908a6bfb5ffd574d3");
  182. crypto_cipher_free(env1);
  183. env1 = crypto_cipher_new_with_iv(
  184. "\x80\x00\x00\x00\x00\x00\x00\x00"
  185. "\x00\x00\x00\x00\x00\x00\x00\x00",
  186. "\x00\x00\x00\x00\xff\xff\xff\xff"
  187. "\xff\xff\xff\xff\xff\xff\xff\xff");
  188. memset(data2, 0, 1024);
  189. crypto_cipher_encrypt(env1, data1, data2, 32);
  190. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  191. "3e63c721df790d2c6469cc1953a3ffac");
  192. crypto_cipher_free(env1);
  193. env1 = crypto_cipher_new_with_iv(
  194. "\x80\x00\x00\x00\x00\x00\x00\x00"
  195. "\x00\x00\x00\x00\x00\x00\x00\x00",
  196. "\xff\xff\xff\xff\xff\xff\xff\xff"
  197. "\xff\xff\xff\xff\xff\xff\xff\xff");
  198. memset(data2, 0, 1024);
  199. crypto_cipher_encrypt(env1, data1, data2, 32);
  200. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  201. "0EDD33D3C621E546455BD8BA1418BEC8");
  202. /* Now check rollover on inplace cipher. */
  203. crypto_cipher_free(env1);
  204. env1 = crypto_cipher_new_with_iv(
  205. "\x80\x00\x00\x00\x00\x00\x00\x00"
  206. "\x00\x00\x00\x00\x00\x00\x00\x00",
  207. "\xff\xff\xff\xff\xff\xff\xff\xff"
  208. "\xff\xff\xff\xff\xff\xff\xff\xff");
  209. crypto_cipher_crypt_inplace(env1, data2, 64);
  210. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  211. "0EDD33D3C621E546455BD8BA1418BEC8"
  212. "93e2c5243d6839eac58503919192f7ae"
  213. "1908e67cafa08d508816659c2e693191");
  214. crypto_cipher_free(env1);
  215. env1 = crypto_cipher_new_with_iv(
  216. "\x80\x00\x00\x00\x00\x00\x00\x00"
  217. "\x00\x00\x00\x00\x00\x00\x00\x00",
  218. "\xff\xff\xff\xff\xff\xff\xff\xff"
  219. "\xff\xff\xff\xff\xff\xff\xff\xff");
  220. crypto_cipher_crypt_inplace(env1, data2, 64);
  221. tt_assert(tor_mem_is_zero(data2, 64));
  222. done:
  223. tor_free(mem_op_hex_tmp);
  224. if (env1)
  225. crypto_cipher_free(env1);
  226. if (env2)
  227. crypto_cipher_free(env2);
  228. tor_free(data1);
  229. tor_free(data2);
  230. tor_free(data3);
  231. }
  232. /** Run unit tests for our SHA-1 functionality */
  233. static void
  234. test_crypto_sha(void *arg)
  235. {
  236. crypto_digest_t *d1 = NULL, *d2 = NULL;
  237. int i;
  238. char key[160];
  239. char digest[32];
  240. char data[50];
  241. char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
  242. char *mem_op_hex_tmp=NULL;
  243. /* Test SHA-1 with a test vector from the specification. */
  244. (void)arg;
  245. i = crypto_digest(data, "abc", 3);
  246. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  247. tt_int_op(i, ==, 0);
  248. /* Test SHA-256 with a test vector from the specification. */
  249. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  250. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  251. "96177A9CB410FF61F20015AD");
  252. tt_int_op(i, ==, 0);
  253. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  254. /* Case empty (wikipedia) */
  255. crypto_hmac_sha256(digest, "", 0, "", 0);
  256. tt_str_op(hex_str(digest, 32),==,
  257. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  258. /* Case quick-brown (wikipedia) */
  259. crypto_hmac_sha256(digest, "key", 3,
  260. "The quick brown fox jumps over the lazy dog", 43);
  261. tt_str_op(hex_str(digest, 32),==,
  262. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  263. /* "Test Case 1" from RFC 4231 */
  264. memset(key, 0x0b, 20);
  265. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  266. test_memeq_hex(digest,
  267. "b0344c61d8db38535ca8afceaf0bf12b"
  268. "881dc200c9833da726e9376c2e32cff7");
  269. /* "Test Case 2" from RFC 4231 */
  270. memset(key, 0x0b, 20);
  271. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  272. test_memeq_hex(digest,
  273. "5bdcc146bf60754e6a042426089575c7"
  274. "5a003f089d2739839dec58b964ec3843");
  275. /* "Test case 3" from RFC 4231 */
  276. memset(key, 0xaa, 20);
  277. memset(data, 0xdd, 50);
  278. crypto_hmac_sha256(digest, key, 20, data, 50);
  279. test_memeq_hex(digest,
  280. "773ea91e36800e46854db8ebd09181a7"
  281. "2959098b3ef8c122d9635514ced565fe");
  282. /* "Test case 4" from RFC 4231 */
  283. base16_decode(key, 25,
  284. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  285. memset(data, 0xcd, 50);
  286. crypto_hmac_sha256(digest, key, 25, data, 50);
  287. test_memeq_hex(digest,
  288. "82558a389a443c0ea4cc819899f2083a"
  289. "85f0faa3e578f8077a2e3ff46729665b");
  290. /* "Test case 5" from RFC 4231 */
  291. memset(key, 0x0c, 20);
  292. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  293. test_memeq_hex(digest,
  294. "a3b6167473100ee06e0c796c2955552b");
  295. /* "Test case 6" from RFC 4231 */
  296. memset(key, 0xaa, 131);
  297. crypto_hmac_sha256(digest, key, 131,
  298. "Test Using Larger Than Block-Size Key - Hash Key First",
  299. 54);
  300. test_memeq_hex(digest,
  301. "60e431591ee0b67f0d8a26aacbf5b77f"
  302. "8e0bc6213728c5140546040f0ee37f54");
  303. /* "Test case 7" from RFC 4231 */
  304. memset(key, 0xaa, 131);
  305. crypto_hmac_sha256(digest, key, 131,
  306. "This is a test using a larger than block-size key and a "
  307. "larger than block-size data. The key needs to be hashed "
  308. "before being used by the HMAC algorithm.", 152);
  309. test_memeq_hex(digest,
  310. "9b09ffa71b942fcb27635fbcd5b0e944"
  311. "bfdc63644f0713938a7f51535c3a35e2");
  312. /* Incremental digest code. */
  313. d1 = crypto_digest_new();
  314. tt_assert(d1);
  315. crypto_digest_add_bytes(d1, "abcdef", 6);
  316. d2 = crypto_digest_dup(d1);
  317. tt_assert(d2);
  318. crypto_digest_add_bytes(d2, "ghijkl", 6);
  319. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  320. crypto_digest(d_out2, "abcdefghijkl", 12);
  321. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  322. crypto_digest_assign(d2, d1);
  323. crypto_digest_add_bytes(d2, "mno", 3);
  324. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  325. crypto_digest(d_out2, "abcdefmno", 9);
  326. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  327. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  328. crypto_digest(d_out2, "abcdef", 6);
  329. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  330. crypto_digest_free(d1);
  331. crypto_digest_free(d2);
  332. /* Incremental digest code with sha256 */
  333. d1 = crypto_digest256_new(DIGEST_SHA256);
  334. tt_assert(d1);
  335. crypto_digest_add_bytes(d1, "abcdef", 6);
  336. d2 = crypto_digest_dup(d1);
  337. tt_assert(d2);
  338. crypto_digest_add_bytes(d2, "ghijkl", 6);
  339. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  340. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  341. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  342. crypto_digest_assign(d2, d1);
  343. crypto_digest_add_bytes(d2, "mno", 3);
  344. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  345. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  346. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  347. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  348. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  349. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  350. done:
  351. if (d1)
  352. crypto_digest_free(d1);
  353. if (d2)
  354. crypto_digest_free(d2);
  355. tor_free(mem_op_hex_tmp);
  356. }
  357. /** Run unit tests for our public key crypto functions */
  358. static void
  359. test_crypto_pk(void *arg)
  360. {
  361. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  362. char *encoded = NULL;
  363. char data1[1024], data2[1024], data3[1024];
  364. size_t size;
  365. int i, len;
  366. /* Public-key ciphers */
  367. (void)arg;
  368. pk1 = pk_generate(0);
  369. pk2 = crypto_pk_new();
  370. tt_assert(pk1 && pk2);
  371. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  372. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  373. tt_int_op(0,==, crypto_pk_cmp_keys(pk1, pk2));
  374. /* comparison between keys and NULL */
  375. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), <, 0);
  376. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), ==, 0);
  377. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), >, 0);
  378. tt_int_op(128,==, crypto_pk_keysize(pk1));
  379. tt_int_op(1024,==, crypto_pk_num_bits(pk1));
  380. tt_int_op(128,==, crypto_pk_keysize(pk2));
  381. tt_int_op(1024,==, crypto_pk_num_bits(pk2));
  382. tt_int_op(128,==, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  383. "Hello whirled.", 15,
  384. PK_PKCS1_OAEP_PADDING));
  385. tt_int_op(128,==, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  386. "Hello whirled.", 15,
  387. PK_PKCS1_OAEP_PADDING));
  388. /* oaep padding should make encryption not match */
  389. tt_mem_op(data1,!=, data2, 128);
  390. tt_int_op(15,==,
  391. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  392. PK_PKCS1_OAEP_PADDING,1));
  393. tt_str_op(data3,==, "Hello whirled.");
  394. memset(data3, 0, 1024);
  395. tt_int_op(15,==,
  396. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  397. PK_PKCS1_OAEP_PADDING,1));
  398. tt_str_op(data3,==, "Hello whirled.");
  399. /* Can't decrypt with public key. */
  400. tt_int_op(-1,==,
  401. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  402. PK_PKCS1_OAEP_PADDING,1));
  403. /* Try again with bad padding */
  404. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  405. tt_int_op(-1,==,
  406. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  407. PK_PKCS1_OAEP_PADDING,1));
  408. /* File operations: save and load private key */
  409. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  410. get_fname("pkey1")));
  411. /* failing case for read: can't read. */
  412. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  413. get_fname("xyzzy")) < 0);
  414. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  415. /* Failing case for read: no key. */
  416. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  417. get_fname("xyzzy")) < 0);
  418. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  419. get_fname("pkey1")));
  420. tt_int_op(15,==,
  421. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  422. PK_PKCS1_OAEP_PADDING,1));
  423. /* Now try signing. */
  424. strlcpy(data1, "Ossifrage", 1024);
  425. tt_int_op(128,==,
  426. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  427. tt_int_op(10,==,
  428. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  429. tt_str_op(data3,==, "Ossifrage");
  430. /* Try signing digests. */
  431. tt_int_op(128,==, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  432. data1, 10));
  433. tt_int_op(20,==,
  434. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  435. tt_int_op(0,==,
  436. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  437. tt_int_op(-1,==,
  438. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  439. /*XXXX test failed signing*/
  440. /* Try encoding */
  441. crypto_pk_free(pk2);
  442. pk2 = NULL;
  443. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  444. tt_int_op(i, >, 0);
  445. pk2 = crypto_pk_asn1_decode(data1, i);
  446. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  447. /* Try with hybrid encryption wrappers. */
  448. crypto_rand(data1, 1024);
  449. for (i = 85; i < 140; ++i) {
  450. memset(data2,0,1024);
  451. memset(data3,0,1024);
  452. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  453. data1,i,PK_PKCS1_OAEP_PADDING,0);
  454. tt_int_op(len, >=, 0);
  455. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  456. data2,len,PK_PKCS1_OAEP_PADDING,1);
  457. tt_int_op(len,==, i);
  458. tt_mem_op(data1,==, data3,i);
  459. }
  460. /* Try copy_full */
  461. crypto_pk_free(pk2);
  462. pk2 = crypto_pk_copy_full(pk1);
  463. tt_assert(pk2 != NULL);
  464. tt_ptr_op(pk1, !=, pk2);
  465. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  466. done:
  467. if (pk1)
  468. crypto_pk_free(pk1);
  469. if (pk2)
  470. crypto_pk_free(pk2);
  471. tor_free(encoded);
  472. }
  473. static void
  474. test_crypto_pk_fingerprints(void *arg)
  475. {
  476. crypto_pk_t *pk = NULL;
  477. char encoded[512];
  478. char d[DIGEST_LEN], d2[DIGEST_LEN];
  479. char fingerprint[FINGERPRINT_LEN+1];
  480. int n;
  481. unsigned i;
  482. char *mem_op_hex_tmp=NULL;
  483. (void)arg;
  484. pk = pk_generate(1);
  485. tt_assert(pk);
  486. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  487. tt_int_op(n, >, 0);
  488. tt_int_op(n, >, 128);
  489. tt_int_op(n, <, 256);
  490. /* Is digest as expected? */
  491. crypto_digest(d, encoded, n);
  492. tt_int_op(0, ==, crypto_pk_get_digest(pk, d2));
  493. tt_mem_op(d,==, d2, DIGEST_LEN);
  494. /* Is fingerprint right? */
  495. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  496. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  497. test_memeq_hex(d, fingerprint);
  498. /* Are spaces right? */
  499. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  500. for (i = 4; i < strlen(fingerprint); i += 5) {
  501. tt_int_op(fingerprint[i], ==, ' ');
  502. }
  503. tor_strstrip(fingerprint, " ");
  504. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  505. test_memeq_hex(d, fingerprint);
  506. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  507. crypto_digest(d2, d, sizeof(d));
  508. tt_int_op(0, ==, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  509. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  510. test_memeq_hex(d2, fingerprint);
  511. done:
  512. crypto_pk_free(pk);
  513. tor_free(mem_op_hex_tmp);
  514. }
  515. /** Sanity check for crypto pk digests */
  516. static void
  517. test_crypto_digests(void *arg)
  518. {
  519. crypto_pk_t *k = NULL;
  520. ssize_t r;
  521. digests_t pkey_digests;
  522. char digest[DIGEST_LEN];
  523. (void)arg;
  524. k = crypto_pk_new();
  525. tt_assert(k);
  526. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  527. tt_assert(!r);
  528. r = crypto_pk_get_digest(k, digest);
  529. tt_assert(r == 0);
  530. tt_mem_op(hex_str(digest, DIGEST_LEN),==,
  531. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  532. r = crypto_pk_get_all_digests(k, &pkey_digests);
  533. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),==,
  534. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  535. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),==,
  536. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  537. done:
  538. crypto_pk_free(k);
  539. }
  540. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  541. * fingerprints, etc) */
  542. static void
  543. test_crypto_formats(void *arg)
  544. {
  545. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  546. int i, j, idx;
  547. (void)arg;
  548. data1 = tor_malloc(1024);
  549. data2 = tor_malloc(1024);
  550. data3 = tor_malloc(1024);
  551. tt_assert(data1 && data2 && data3);
  552. /* Base64 tests */
  553. memset(data1, 6, 1024);
  554. for (idx = 0; idx < 10; ++idx) {
  555. i = base64_encode(data2, 1024, data1, idx);
  556. tt_int_op(i, >=, 0);
  557. j = base64_decode(data3, 1024, data2, i);
  558. tt_int_op(j,==, idx);
  559. tt_mem_op(data3,==, data1, idx);
  560. }
  561. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  562. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  563. i = base64_encode(data2, 1024, data1, 71);
  564. tt_int_op(i, >=, 0);
  565. j = base64_decode(data3, 1024, data2, i);
  566. tt_int_op(j,==, 71);
  567. tt_str_op(data3,==, data1);
  568. tt_int_op(data2[i], ==, '\0');
  569. crypto_rand(data1, DIGEST_LEN);
  570. memset(data2, 100, 1024);
  571. digest_to_base64(data2, data1);
  572. tt_int_op(BASE64_DIGEST_LEN,==, strlen(data2));
  573. tt_int_op(100,==, data2[BASE64_DIGEST_LEN+2]);
  574. memset(data3, 99, 1024);
  575. tt_int_op(digest_from_base64(data3, data2),==, 0);
  576. tt_mem_op(data1,==, data3, DIGEST_LEN);
  577. tt_int_op(99,==, data3[DIGEST_LEN+1]);
  578. tt_assert(digest_from_base64(data3, "###") < 0);
  579. /* Encoding SHA256 */
  580. crypto_rand(data2, DIGEST256_LEN);
  581. memset(data2, 100, 1024);
  582. digest256_to_base64(data2, data1);
  583. tt_int_op(BASE64_DIGEST256_LEN,==, strlen(data2));
  584. tt_int_op(100,==, data2[BASE64_DIGEST256_LEN+2]);
  585. memset(data3, 99, 1024);
  586. tt_int_op(digest256_from_base64(data3, data2),==, 0);
  587. tt_mem_op(data1,==, data3, DIGEST256_LEN);
  588. tt_int_op(99,==, data3[DIGEST256_LEN+1]);
  589. /* Base32 tests */
  590. strlcpy(data1, "5chrs", 1024);
  591. /* bit pattern is: [35 63 68 72 73] ->
  592. * [00110101 01100011 01101000 01110010 01110011]
  593. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  594. */
  595. base32_encode(data2, 9, data1, 5);
  596. tt_str_op(data2,==, "gvrwq4tt");
  597. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  598. base32_encode(data2, 30, data1, 10);
  599. tt_str_op(data2,==, "772w2rfobvomsywe");
  600. /* Base16 tests */
  601. strlcpy(data1, "6chrs\xff", 1024);
  602. base16_encode(data2, 13, data1, 6);
  603. tt_str_op(data2,==, "3663687273FF");
  604. strlcpy(data1, "f0d678affc000100", 1024);
  605. i = base16_decode(data2, 8, data1, 16);
  606. tt_int_op(i,==, 0);
  607. tt_mem_op(data2,==, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  608. /* now try some failing base16 decodes */
  609. tt_int_op(-1,==, base16_decode(data2, 8, data1, 15)); /* odd input len */
  610. tt_int_op(-1,==, base16_decode(data2, 7, data1, 16)); /* dest too short */
  611. strlcpy(data1, "f0dz!8affc000100", 1024);
  612. tt_int_op(-1,==, base16_decode(data2, 8, data1, 16));
  613. tor_free(data1);
  614. tor_free(data2);
  615. tor_free(data3);
  616. /* Add spaces to fingerprint */
  617. {
  618. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  619. tt_int_op(strlen(data1),==, 40);
  620. data2 = tor_malloc(FINGERPRINT_LEN+1);
  621. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  622. tt_str_op(data2,==, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  623. tor_free(data1);
  624. tor_free(data2);
  625. }
  626. done:
  627. tor_free(data1);
  628. tor_free(data2);
  629. tor_free(data3);
  630. }
  631. /** Run unit tests for our secret-to-key passphrase hashing functionality. */
  632. static void
  633. test_crypto_s2k(void *arg)
  634. {
  635. char buf[29];
  636. char buf2[29];
  637. char *buf3 = NULL;
  638. int i;
  639. (void)arg;
  640. memset(buf, 0, sizeof(buf));
  641. memset(buf2, 0, sizeof(buf2));
  642. buf3 = tor_malloc(65536);
  643. memset(buf3, 0, 65536);
  644. secret_to_key(buf+9, 20, "", 0, buf);
  645. crypto_digest(buf2+9, buf3, 1024);
  646. tt_mem_op(buf,==, buf2, 29);
  647. memcpy(buf,"vrbacrda",8);
  648. memcpy(buf2,"vrbacrda",8);
  649. buf[8] = 96;
  650. buf2[8] = 96;
  651. secret_to_key(buf+9, 20, "12345678", 8, buf);
  652. for (i = 0; i < 65536; i += 16) {
  653. memcpy(buf3+i, "vrbacrda12345678", 16);
  654. }
  655. crypto_digest(buf2+9, buf3, 65536);
  656. tt_mem_op(buf,==, buf2, 29);
  657. done:
  658. tor_free(buf3);
  659. }
  660. /** Test AES-CTR encryption and decryption with IV. */
  661. static void
  662. test_crypto_aes_iv(void *arg)
  663. {
  664. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  665. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  666. char key1[16], key2[16];
  667. ssize_t encrypted_size, decrypted_size;
  668. int use_evp = !strcmp(arg,"evp");
  669. evaluate_evp_for_aes(use_evp);
  670. plain = tor_malloc(4095);
  671. encrypted1 = tor_malloc(4095 + 1 + 16);
  672. encrypted2 = tor_malloc(4095 + 1 + 16);
  673. decrypted1 = tor_malloc(4095 + 1);
  674. decrypted2 = tor_malloc(4095 + 1);
  675. crypto_rand(plain, 4095);
  676. crypto_rand(key1, 16);
  677. crypto_rand(key2, 16);
  678. crypto_rand(plain_1, 1);
  679. crypto_rand(plain_15, 15);
  680. crypto_rand(plain_16, 16);
  681. crypto_rand(plain_17, 17);
  682. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  683. /* Encrypt and decrypt with the same key. */
  684. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  685. plain, 4095);
  686. tt_int_op(encrypted_size,==, 16 + 4095);
  687. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  688. * greater than 0, but its truth is not
  689. * obvious to all analysis tools. */
  690. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  691. encrypted1, encrypted_size);
  692. tt_int_op(decrypted_size,==, 4095);
  693. tt_assert(decrypted_size > 0);
  694. tt_mem_op(plain,==, decrypted1, 4095);
  695. /* Encrypt a second time (with a new random initialization vector). */
  696. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  697. plain, 4095);
  698. tt_int_op(encrypted_size,==, 16 + 4095);
  699. tt_assert(encrypted_size > 0);
  700. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  701. encrypted2, encrypted_size);
  702. tt_int_op(decrypted_size,==, 4095);
  703. tt_assert(decrypted_size > 0);
  704. tt_mem_op(plain,==, decrypted2, 4095);
  705. tt_mem_op(encrypted1,!=, encrypted2, encrypted_size);
  706. /* Decrypt with the wrong key. */
  707. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  708. encrypted1, encrypted_size);
  709. tt_int_op(decrypted_size,==, 4095);
  710. tt_mem_op(plain,!=, decrypted2, decrypted_size);
  711. /* Alter the initialization vector. */
  712. encrypted1[0] += 42;
  713. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  714. encrypted1, encrypted_size);
  715. tt_int_op(decrypted_size,==, 4095);
  716. tt_mem_op(plain,!=, decrypted2, 4095);
  717. /* Special length case: 1. */
  718. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  719. plain_1, 1);
  720. tt_int_op(encrypted_size,==, 16 + 1);
  721. tt_assert(encrypted_size > 0);
  722. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  723. encrypted1, encrypted_size);
  724. tt_int_op(decrypted_size,==, 1);
  725. tt_assert(decrypted_size > 0);
  726. tt_mem_op(plain_1,==, decrypted1, 1);
  727. /* Special length case: 15. */
  728. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  729. plain_15, 15);
  730. tt_int_op(encrypted_size,==, 16 + 15);
  731. tt_assert(encrypted_size > 0);
  732. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  733. encrypted1, encrypted_size);
  734. tt_int_op(decrypted_size,==, 15);
  735. tt_assert(decrypted_size > 0);
  736. tt_mem_op(plain_15,==, decrypted1, 15);
  737. /* Special length case: 16. */
  738. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  739. plain_16, 16);
  740. tt_int_op(encrypted_size,==, 16 + 16);
  741. tt_assert(encrypted_size > 0);
  742. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  743. encrypted1, encrypted_size);
  744. tt_int_op(decrypted_size,==, 16);
  745. tt_assert(decrypted_size > 0);
  746. tt_mem_op(plain_16,==, decrypted1, 16);
  747. /* Special length case: 17. */
  748. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  749. plain_17, 17);
  750. tt_int_op(encrypted_size,==, 16 + 17);
  751. tt_assert(encrypted_size > 0);
  752. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  753. encrypted1, encrypted_size);
  754. tt_int_op(decrypted_size,==, 17);
  755. tt_assert(decrypted_size > 0);
  756. tt_mem_op(plain_17,==, decrypted1, 17);
  757. done:
  758. /* Free memory. */
  759. tor_free(plain);
  760. tor_free(encrypted1);
  761. tor_free(encrypted2);
  762. tor_free(decrypted1);
  763. tor_free(decrypted2);
  764. }
  765. /** Test base32 decoding. */
  766. static void
  767. test_crypto_base32_decode(void *arg)
  768. {
  769. char plain[60], encoded[96 + 1], decoded[60];
  770. int res;
  771. (void)arg;
  772. crypto_rand(plain, 60);
  773. /* Encode and decode a random string. */
  774. base32_encode(encoded, 96 + 1, plain, 60);
  775. res = base32_decode(decoded, 60, encoded, 96);
  776. tt_int_op(res,==, 0);
  777. tt_mem_op(plain,==, decoded, 60);
  778. /* Encode, uppercase, and decode a random string. */
  779. base32_encode(encoded, 96 + 1, plain, 60);
  780. tor_strupper(encoded);
  781. res = base32_decode(decoded, 60, encoded, 96);
  782. tt_int_op(res,==, 0);
  783. tt_mem_op(plain,==, decoded, 60);
  784. /* Change encoded string and decode. */
  785. if (encoded[0] == 'A' || encoded[0] == 'a')
  786. encoded[0] = 'B';
  787. else
  788. encoded[0] = 'A';
  789. res = base32_decode(decoded, 60, encoded, 96);
  790. tt_int_op(res,==, 0);
  791. tt_mem_op(plain,!=, decoded, 60);
  792. /* Bad encodings. */
  793. encoded[0] = '!';
  794. res = base32_decode(decoded, 60, encoded, 96);
  795. tt_int_op(0, >, res);
  796. done:
  797. ;
  798. }
  799. static void
  800. test_crypto_kdf_TAP(void *arg)
  801. {
  802. uint8_t key_material[100];
  803. int r;
  804. char *mem_op_hex_tmp = NULL;
  805. (void)arg;
  806. #define EXPAND(s) \
  807. r = crypto_expand_key_material_TAP( \
  808. (const uint8_t*)(s), strlen(s), \
  809. key_material, 100)
  810. /* Test vectors generated with a little python script; feel free to write
  811. * your own. */
  812. memset(key_material, 0, sizeof(key_material));
  813. EXPAND("");
  814. tt_int_op(r, ==, 0);
  815. test_memeq_hex(key_material,
  816. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  817. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  818. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  819. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  820. EXPAND("Tor");
  821. tt_int_op(r, ==, 0);
  822. test_memeq_hex(key_material,
  823. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  824. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  825. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  826. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  827. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  828. tt_int_op(r, ==, 0);
  829. test_memeq_hex(key_material,
  830. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  831. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  832. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  833. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  834. done:
  835. tor_free(mem_op_hex_tmp);
  836. #undef EXPAND
  837. }
  838. static void
  839. test_crypto_hkdf_sha256(void *arg)
  840. {
  841. uint8_t key_material[100];
  842. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  843. const size_t salt_len = strlen((char*)salt);
  844. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  845. const size_t m_expand_len = strlen((char*)m_expand);
  846. int r;
  847. char *mem_op_hex_tmp = NULL;
  848. (void)arg;
  849. #define EXPAND(s) \
  850. r = crypto_expand_key_material_rfc5869_sha256( \
  851. (const uint8_t*)(s), strlen(s), \
  852. salt, salt_len, \
  853. m_expand, m_expand_len, \
  854. key_material, 100)
  855. /* Test vectors generated with ntor_ref.py */
  856. memset(key_material, 0, sizeof(key_material));
  857. EXPAND("");
  858. tt_int_op(r, ==, 0);
  859. test_memeq_hex(key_material,
  860. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  861. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  862. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  863. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  864. EXPAND("Tor");
  865. tt_int_op(r, ==, 0);
  866. test_memeq_hex(key_material,
  867. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  868. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  869. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  870. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  871. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  872. tt_int_op(r, ==, 0);
  873. test_memeq_hex(key_material,
  874. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  875. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  876. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  877. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  878. done:
  879. tor_free(mem_op_hex_tmp);
  880. #undef EXPAND
  881. }
  882. #ifdef CURVE25519_ENABLED
  883. static void
  884. test_crypto_curve25519_impl(void *arg)
  885. {
  886. /* adapted from curve25519_donna, which adapted it from test-curve25519
  887. version 20050915, by D. J. Bernstein, Public domain. */
  888. const int randomize_high_bit = (arg != NULL);
  889. #ifdef SLOW_CURVE25519_TEST
  890. const int loop_max=10000;
  891. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  892. "7e0329f4dd2819f5f32d130f1296b500";
  893. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  894. "e0544770bc7de853b38f9100489e3e79";
  895. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  896. "bd13861475516bc2cd2b6e005e805064";
  897. #else
  898. const int loop_max=200;
  899. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  900. "c6a1037d74cceb3712e9206871dcf654";
  901. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  902. "8e3ee1a63c7d14274ea5d4c67f065467";
  903. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  904. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  905. #endif
  906. unsigned char e1k[32];
  907. unsigned char e2k[32];
  908. unsigned char e1e2k[32];
  909. unsigned char e2e1k[32];
  910. unsigned char e1[32] = {3};
  911. unsigned char e2[32] = {5};
  912. unsigned char k[32] = {9};
  913. int loop, i;
  914. char *mem_op_hex_tmp = NULL;
  915. for (loop = 0; loop < loop_max; ++loop) {
  916. curve25519_impl(e1k,e1,k);
  917. curve25519_impl(e2e1k,e2,e1k);
  918. curve25519_impl(e2k,e2,k);
  919. if (randomize_high_bit) {
  920. /* We require that the high bit of the public key be ignored. So if
  921. * we're doing this variant test, we randomize the high bit of e2k, and
  922. * make sure that the handshake still works out the same as it would
  923. * otherwise. */
  924. uint8_t byte;
  925. crypto_rand((char*)&byte, 1);
  926. e2k[31] |= (byte & 0x80);
  927. }
  928. curve25519_impl(e1e2k,e1,e2k);
  929. tt_mem_op(e1e2k,==, e2e1k, 32);
  930. if (loop == loop_max-1) {
  931. break;
  932. }
  933. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  934. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  935. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  936. }
  937. test_memeq_hex(e1, e1_expected);
  938. test_memeq_hex(e2k, e2k_expected);
  939. test_memeq_hex(e1e2k, e1e2k_expected);
  940. done:
  941. tor_free(mem_op_hex_tmp);
  942. }
  943. static void
  944. test_crypto_curve25519_wrappers(void *arg)
  945. {
  946. curve25519_public_key_t pubkey1, pubkey2;
  947. curve25519_secret_key_t seckey1, seckey2;
  948. uint8_t output1[CURVE25519_OUTPUT_LEN];
  949. uint8_t output2[CURVE25519_OUTPUT_LEN];
  950. (void)arg;
  951. /* Test a simple handshake, serializing and deserializing some stuff. */
  952. curve25519_secret_key_generate(&seckey1, 0);
  953. curve25519_secret_key_generate(&seckey2, 1);
  954. curve25519_public_key_generate(&pubkey1, &seckey1);
  955. curve25519_public_key_generate(&pubkey2, &seckey2);
  956. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  957. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  958. curve25519_handshake(output1, &seckey1, &pubkey2);
  959. curve25519_handshake(output2, &seckey2, &pubkey1);
  960. tt_mem_op(output1,==, output2, sizeof(output1));
  961. done:
  962. ;
  963. }
  964. static void
  965. test_crypto_curve25519_encode(void *arg)
  966. {
  967. curve25519_secret_key_t seckey;
  968. curve25519_public_key_t key1, key2, key3;
  969. char buf[64];
  970. (void)arg;
  971. curve25519_secret_key_generate(&seckey, 0);
  972. curve25519_public_key_generate(&key1, &seckey);
  973. tt_int_op(0, ==, curve25519_public_to_base64(buf, &key1));
  974. tt_int_op(CURVE25519_BASE64_PADDED_LEN, ==, strlen(buf));
  975. tt_int_op(0, ==, curve25519_public_from_base64(&key2, buf));
  976. tt_mem_op(key1.public_key,==, key2.public_key, CURVE25519_PUBKEY_LEN);
  977. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  978. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, ==, strlen(buf));
  979. tt_int_op(0, ==, curve25519_public_from_base64(&key3, buf));
  980. tt_mem_op(key1.public_key,==, key3.public_key, CURVE25519_PUBKEY_LEN);
  981. /* Now try bogus parses. */
  982. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  983. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  984. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  985. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  986. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  987. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  988. done:
  989. ;
  990. }
  991. static void
  992. test_crypto_curve25519_persist(void *arg)
  993. {
  994. curve25519_keypair_t keypair, keypair2;
  995. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  996. char *tag = NULL;
  997. char *content = NULL;
  998. const char *cp;
  999. struct stat st;
  1000. size_t taglen;
  1001. (void)arg;
  1002. tt_int_op(0,==,curve25519_keypair_generate(&keypair, 0));
  1003. tt_int_op(0,==,curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1004. tt_int_op(0,==,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1005. tt_str_op(tag,==,"testing");
  1006. tor_free(tag);
  1007. tt_mem_op(keypair.pubkey.public_key,==,
  1008. keypair2.pubkey.public_key,
  1009. CURVE25519_PUBKEY_LEN);
  1010. tt_mem_op(keypair.seckey.secret_key,==,
  1011. keypair2.seckey.secret_key,
  1012. CURVE25519_SECKEY_LEN);
  1013. content = read_file_to_str(fname, RFTS_BIN, &st);
  1014. tt_assert(content);
  1015. taglen = strlen("== c25519v1: testing ==");
  1016. tt_u64_op((uint64_t)st.st_size, ==,
  1017. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1018. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1019. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1020. cp = content + 32;
  1021. tt_mem_op(keypair.seckey.secret_key,==,
  1022. cp,
  1023. CURVE25519_SECKEY_LEN);
  1024. cp += CURVE25519_SECKEY_LEN;
  1025. tt_mem_op(keypair.pubkey.public_key,==,
  1026. cp,
  1027. CURVE25519_SECKEY_LEN);
  1028. tor_free(fname);
  1029. fname = tor_strdup(get_fname("bogus_keypair"));
  1030. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1031. tor_free(tag);
  1032. content[69] ^= 0xff;
  1033. tt_int_op(0, ==, write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1034. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1035. done:
  1036. tor_free(fname);
  1037. tor_free(content);
  1038. tor_free(tag);
  1039. }
  1040. #endif
  1041. static void
  1042. test_crypto_siphash(void *arg)
  1043. {
  1044. /* From the reference implementation, taking
  1045. k = 00 01 02 ... 0f
  1046. and in = 00; 00 01; 00 01 02; ...
  1047. */
  1048. const uint8_t VECTORS[64][8] =
  1049. {
  1050. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  1051. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  1052. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  1053. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  1054. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  1055. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  1056. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  1057. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  1058. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  1059. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  1060. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  1061. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  1062. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  1063. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  1064. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  1065. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  1066. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  1067. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  1068. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  1069. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  1070. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  1071. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  1072. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  1073. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  1074. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  1075. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  1076. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  1077. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  1078. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  1079. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  1080. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  1081. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  1082. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  1083. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  1084. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  1085. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  1086. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  1087. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  1088. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  1089. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  1090. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  1091. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  1092. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  1093. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  1094. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  1095. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  1096. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  1097. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  1098. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  1099. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  1100. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  1101. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  1102. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  1103. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  1104. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  1105. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  1106. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  1107. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  1108. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  1109. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  1110. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  1111. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  1112. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  1113. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  1114. };
  1115. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  1116. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  1117. uint8_t input[64];
  1118. int i, j;
  1119. (void)arg;
  1120. for (i = 0; i < 64; ++i)
  1121. input[i] = i;
  1122. for (i = 0; i < 64; ++i) {
  1123. uint64_t r = siphash24(input, i, &K);
  1124. for (j = 0; j < 8; ++j) {
  1125. tt_int_op( (r >> (j*8)) & 0xff, ==, VECTORS[i][j]);
  1126. }
  1127. }
  1128. done:
  1129. ;
  1130. }
  1131. static void *
  1132. pass_data_setup_fn(const struct testcase_t *testcase)
  1133. {
  1134. return testcase->setup_data;
  1135. }
  1136. static int
  1137. pass_data_cleanup_fn(const struct testcase_t *testcase, void *ptr)
  1138. {
  1139. (void)ptr;
  1140. (void)testcase;
  1141. return 1;
  1142. }
  1143. static const struct testcase_setup_t pass_data = {
  1144. pass_data_setup_fn, pass_data_cleanup_fn
  1145. };
  1146. #define CRYPTO_LEGACY(name) \
  1147. { #name, test_crypto_ ## name , 0, NULL, NULL }
  1148. struct testcase_t crypto_tests[] = {
  1149. CRYPTO_LEGACY(formats),
  1150. CRYPTO_LEGACY(rng),
  1151. { "aes_AES", test_crypto_aes, TT_FORK, &pass_data, (void*)"aes" },
  1152. { "aes_EVP", test_crypto_aes, TT_FORK, &pass_data, (void*)"evp" },
  1153. CRYPTO_LEGACY(sha),
  1154. CRYPTO_LEGACY(pk),
  1155. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  1156. CRYPTO_LEGACY(digests),
  1157. CRYPTO_LEGACY(dh),
  1158. CRYPTO_LEGACY(s2k),
  1159. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"aes" },
  1160. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"evp" },
  1161. CRYPTO_LEGACY(base32_decode),
  1162. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  1163. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  1164. #ifdef CURVE25519_ENABLED
  1165. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  1166. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  1167. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  1168. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  1169. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  1170. #endif
  1171. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  1172. END_OF_TESTCASES
  1173. };