test_crypto.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2015, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #include "or.h"
  8. #include "test.h"
  9. #include "aes.h"
  10. #include "util.h"
  11. #include "siphash.h"
  12. #include "crypto_curve25519.h"
  13. #include "crypto_ed25519.h"
  14. #include "ed25519_vectors.inc"
  15. #include <openssl/evp.h>
  16. extern const char AUTHORITY_SIGNKEY_3[];
  17. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  18. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  19. /** Run unit tests for Diffie-Hellman functionality. */
  20. static void
  21. test_crypto_dh(void *arg)
  22. {
  23. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  24. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  25. char p1[DH_BYTES];
  26. char p2[DH_BYTES];
  27. char s1[DH_BYTES];
  28. char s2[DH_BYTES];
  29. ssize_t s1len, s2len;
  30. (void)arg;
  31. tt_int_op(crypto_dh_get_bytes(dh1),OP_EQ, DH_BYTES);
  32. tt_int_op(crypto_dh_get_bytes(dh2),OP_EQ, DH_BYTES);
  33. memset(p1, 0, DH_BYTES);
  34. memset(p2, 0, DH_BYTES);
  35. tt_mem_op(p1,OP_EQ, p2, DH_BYTES);
  36. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  37. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  38. tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  39. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  40. memset(s1, 0, DH_BYTES);
  41. memset(s2, 0xFF, DH_BYTES);
  42. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  43. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  44. tt_assert(s1len > 0);
  45. tt_int_op(s1len,OP_EQ, s2len);
  46. tt_mem_op(s1,OP_EQ, s2, s1len);
  47. {
  48. /* XXXX Now fabricate some bad values and make sure they get caught,
  49. * Check 0, 1, N-1, >= N, etc.
  50. */
  51. }
  52. done:
  53. crypto_dh_free(dh1);
  54. crypto_dh_free(dh2);
  55. }
  56. /** Run unit tests for our random number generation function and its wrappers.
  57. */
  58. static void
  59. test_crypto_rng(void *arg)
  60. {
  61. int i, j, allok;
  62. char data1[100], data2[100];
  63. double d;
  64. /* Try out RNG. */
  65. (void)arg;
  66. tt_assert(! crypto_seed_rng());
  67. crypto_rand(data1, 100);
  68. crypto_rand(data2, 100);
  69. tt_mem_op(data1,OP_NE, data2,100);
  70. allok = 1;
  71. for (i = 0; i < 100; ++i) {
  72. uint64_t big;
  73. char *host;
  74. j = crypto_rand_int(100);
  75. if (j < 0 || j >= 100)
  76. allok = 0;
  77. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  78. if (big >= (U64_LITERAL(1)<<40))
  79. allok = 0;
  80. big = crypto_rand_uint64(U64_LITERAL(5));
  81. if (big >= 5)
  82. allok = 0;
  83. d = crypto_rand_double();
  84. tt_assert(d >= 0);
  85. tt_assert(d < 1.0);
  86. host = crypto_random_hostname(3,8,"www.",".onion");
  87. if (strcmpstart(host,"www.") ||
  88. strcmpend(host,".onion") ||
  89. strlen(host) < 13 ||
  90. strlen(host) > 18)
  91. allok = 0;
  92. tor_free(host);
  93. }
  94. tt_assert(allok);
  95. done:
  96. ;
  97. }
  98. static void
  99. test_crypto_rng_range(void *arg)
  100. {
  101. int got_smallest = 0, got_largest = 0;
  102. int i;
  103. (void)arg;
  104. for (i = 0; i < 1000; ++i) {
  105. int x = crypto_rand_int_range(5,9);
  106. tt_int_op(x, OP_GE, 5);
  107. tt_int_op(x, OP_LT, 9);
  108. if (x == 5)
  109. got_smallest = 1;
  110. if (x == 8)
  111. got_largest = 1;
  112. }
  113. /* These fail with probability 1/10^603. */
  114. tt_assert(got_smallest);
  115. tt_assert(got_largest);
  116. done:
  117. ;
  118. }
  119. /** Run unit tests for our AES functionality */
  120. static void
  121. test_crypto_aes(void *arg)
  122. {
  123. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  124. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  125. int i, j;
  126. char *mem_op_hex_tmp=NULL;
  127. int use_evp = !strcmp(arg,"evp");
  128. evaluate_evp_for_aes(use_evp);
  129. evaluate_ctr_for_aes();
  130. data1 = tor_malloc(1024);
  131. data2 = tor_malloc(1024);
  132. data3 = tor_malloc(1024);
  133. /* Now, test encryption and decryption with stream cipher. */
  134. data1[0]='\0';
  135. for (i = 1023; i>0; i -= 35)
  136. strncat(data1, "Now is the time for all good onions", i);
  137. memset(data2, 0, 1024);
  138. memset(data3, 0, 1024);
  139. env1 = crypto_cipher_new(NULL);
  140. tt_ptr_op(env1, OP_NE, NULL);
  141. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  142. tt_ptr_op(env2, OP_NE, NULL);
  143. /* Try encrypting 512 chars. */
  144. crypto_cipher_encrypt(env1, data2, data1, 512);
  145. crypto_cipher_decrypt(env2, data3, data2, 512);
  146. tt_mem_op(data1,OP_EQ, data3, 512);
  147. tt_mem_op(data1,OP_NE, data2, 512);
  148. /* Now encrypt 1 at a time, and get 1 at a time. */
  149. for (j = 512; j < 560; ++j) {
  150. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  151. }
  152. for (j = 512; j < 560; ++j) {
  153. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  154. }
  155. tt_mem_op(data1,OP_EQ, data3, 560);
  156. /* Now encrypt 3 at a time, and get 5 at a time. */
  157. for (j = 560; j < 1024-5; j += 3) {
  158. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  159. }
  160. for (j = 560; j < 1024-5; j += 5) {
  161. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  162. }
  163. tt_mem_op(data1,OP_EQ, data3, 1024-5);
  164. /* Now make sure that when we encrypt with different chunk sizes, we get
  165. the same results. */
  166. crypto_cipher_free(env2);
  167. env2 = NULL;
  168. memset(data3, 0, 1024);
  169. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  170. tt_ptr_op(env2, OP_NE, NULL);
  171. for (j = 0; j < 1024-16; j += 17) {
  172. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  173. }
  174. for (j= 0; j < 1024-16; ++j) {
  175. if (data2[j] != data3[j]) {
  176. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  177. }
  178. }
  179. tt_mem_op(data2,OP_EQ, data3, 1024-16);
  180. crypto_cipher_free(env1);
  181. env1 = NULL;
  182. crypto_cipher_free(env2);
  183. env2 = NULL;
  184. /* NIST test vector for aes. */
  185. /* IV starts at 0 */
  186. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  187. "\x00\x00\x00\x00\x00\x00\x00\x00");
  188. crypto_cipher_encrypt(env1, data1,
  189. "\x00\x00\x00\x00\x00\x00\x00\x00"
  190. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  191. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  192. /* Now test rollover. All these values are originally from a python
  193. * script. */
  194. crypto_cipher_free(env1);
  195. env1 = crypto_cipher_new_with_iv(
  196. "\x80\x00\x00\x00\x00\x00\x00\x00"
  197. "\x00\x00\x00\x00\x00\x00\x00\x00",
  198. "\x00\x00\x00\x00\x00\x00\x00\x00"
  199. "\xff\xff\xff\xff\xff\xff\xff\xff");
  200. memset(data2, 0, 1024);
  201. crypto_cipher_encrypt(env1, data1, data2, 32);
  202. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  203. "cdd0b917dbc7186908a6bfb5ffd574d3");
  204. crypto_cipher_free(env1);
  205. env1 = crypto_cipher_new_with_iv(
  206. "\x80\x00\x00\x00\x00\x00\x00\x00"
  207. "\x00\x00\x00\x00\x00\x00\x00\x00",
  208. "\x00\x00\x00\x00\xff\xff\xff\xff"
  209. "\xff\xff\xff\xff\xff\xff\xff\xff");
  210. memset(data2, 0, 1024);
  211. crypto_cipher_encrypt(env1, data1, data2, 32);
  212. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  213. "3e63c721df790d2c6469cc1953a3ffac");
  214. crypto_cipher_free(env1);
  215. env1 = crypto_cipher_new_with_iv(
  216. "\x80\x00\x00\x00\x00\x00\x00\x00"
  217. "\x00\x00\x00\x00\x00\x00\x00\x00",
  218. "\xff\xff\xff\xff\xff\xff\xff\xff"
  219. "\xff\xff\xff\xff\xff\xff\xff\xff");
  220. memset(data2, 0, 1024);
  221. crypto_cipher_encrypt(env1, data1, data2, 32);
  222. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  223. "0EDD33D3C621E546455BD8BA1418BEC8");
  224. /* Now check rollover on inplace cipher. */
  225. crypto_cipher_free(env1);
  226. env1 = crypto_cipher_new_with_iv(
  227. "\x80\x00\x00\x00\x00\x00\x00\x00"
  228. "\x00\x00\x00\x00\x00\x00\x00\x00",
  229. "\xff\xff\xff\xff\xff\xff\xff\xff"
  230. "\xff\xff\xff\xff\xff\xff\xff\xff");
  231. crypto_cipher_crypt_inplace(env1, data2, 64);
  232. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  233. "0EDD33D3C621E546455BD8BA1418BEC8"
  234. "93e2c5243d6839eac58503919192f7ae"
  235. "1908e67cafa08d508816659c2e693191");
  236. crypto_cipher_free(env1);
  237. env1 = crypto_cipher_new_with_iv(
  238. "\x80\x00\x00\x00\x00\x00\x00\x00"
  239. "\x00\x00\x00\x00\x00\x00\x00\x00",
  240. "\xff\xff\xff\xff\xff\xff\xff\xff"
  241. "\xff\xff\xff\xff\xff\xff\xff\xff");
  242. crypto_cipher_crypt_inplace(env1, data2, 64);
  243. tt_assert(tor_mem_is_zero(data2, 64));
  244. done:
  245. tor_free(mem_op_hex_tmp);
  246. if (env1)
  247. crypto_cipher_free(env1);
  248. if (env2)
  249. crypto_cipher_free(env2);
  250. tor_free(data1);
  251. tor_free(data2);
  252. tor_free(data3);
  253. }
  254. /** Run unit tests for our SHA-1 functionality */
  255. static void
  256. test_crypto_sha(void *arg)
  257. {
  258. crypto_digest_t *d1 = NULL, *d2 = NULL;
  259. int i;
  260. char key[160];
  261. char digest[32];
  262. char data[50];
  263. char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
  264. char *mem_op_hex_tmp=NULL;
  265. /* Test SHA-1 with a test vector from the specification. */
  266. (void)arg;
  267. i = crypto_digest(data, "abc", 3);
  268. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  269. tt_int_op(i, OP_EQ, 0);
  270. /* Test SHA-256 with a test vector from the specification. */
  271. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  272. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  273. "96177A9CB410FF61F20015AD");
  274. tt_int_op(i, OP_EQ, 0);
  275. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  276. /* Case empty (wikipedia) */
  277. crypto_hmac_sha256(digest, "", 0, "", 0);
  278. tt_str_op(hex_str(digest, 32),OP_EQ,
  279. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  280. /* Case quick-brown (wikipedia) */
  281. crypto_hmac_sha256(digest, "key", 3,
  282. "The quick brown fox jumps over the lazy dog", 43);
  283. tt_str_op(hex_str(digest, 32),OP_EQ,
  284. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  285. /* "Test Case 1" from RFC 4231 */
  286. memset(key, 0x0b, 20);
  287. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  288. test_memeq_hex(digest,
  289. "b0344c61d8db38535ca8afceaf0bf12b"
  290. "881dc200c9833da726e9376c2e32cff7");
  291. /* "Test Case 2" from RFC 4231 */
  292. memset(key, 0x0b, 20);
  293. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  294. test_memeq_hex(digest,
  295. "5bdcc146bf60754e6a042426089575c7"
  296. "5a003f089d2739839dec58b964ec3843");
  297. /* "Test case 3" from RFC 4231 */
  298. memset(key, 0xaa, 20);
  299. memset(data, 0xdd, 50);
  300. crypto_hmac_sha256(digest, key, 20, data, 50);
  301. test_memeq_hex(digest,
  302. "773ea91e36800e46854db8ebd09181a7"
  303. "2959098b3ef8c122d9635514ced565fe");
  304. /* "Test case 4" from RFC 4231 */
  305. base16_decode(key, 25,
  306. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  307. memset(data, 0xcd, 50);
  308. crypto_hmac_sha256(digest, key, 25, data, 50);
  309. test_memeq_hex(digest,
  310. "82558a389a443c0ea4cc819899f2083a"
  311. "85f0faa3e578f8077a2e3ff46729665b");
  312. /* "Test case 5" from RFC 4231 */
  313. memset(key, 0x0c, 20);
  314. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  315. test_memeq_hex(digest,
  316. "a3b6167473100ee06e0c796c2955552b");
  317. /* "Test case 6" from RFC 4231 */
  318. memset(key, 0xaa, 131);
  319. crypto_hmac_sha256(digest, key, 131,
  320. "Test Using Larger Than Block-Size Key - Hash Key First",
  321. 54);
  322. test_memeq_hex(digest,
  323. "60e431591ee0b67f0d8a26aacbf5b77f"
  324. "8e0bc6213728c5140546040f0ee37f54");
  325. /* "Test case 7" from RFC 4231 */
  326. memset(key, 0xaa, 131);
  327. crypto_hmac_sha256(digest, key, 131,
  328. "This is a test using a larger than block-size key and a "
  329. "larger than block-size data. The key needs to be hashed "
  330. "before being used by the HMAC algorithm.", 152);
  331. test_memeq_hex(digest,
  332. "9b09ffa71b942fcb27635fbcd5b0e944"
  333. "bfdc63644f0713938a7f51535c3a35e2");
  334. /* Incremental digest code. */
  335. d1 = crypto_digest_new();
  336. tt_assert(d1);
  337. crypto_digest_add_bytes(d1, "abcdef", 6);
  338. d2 = crypto_digest_dup(d1);
  339. tt_assert(d2);
  340. crypto_digest_add_bytes(d2, "ghijkl", 6);
  341. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  342. crypto_digest(d_out2, "abcdefghijkl", 12);
  343. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  344. crypto_digest_assign(d2, d1);
  345. crypto_digest_add_bytes(d2, "mno", 3);
  346. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  347. crypto_digest(d_out2, "abcdefmno", 9);
  348. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  349. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  350. crypto_digest(d_out2, "abcdef", 6);
  351. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  352. crypto_digest_free(d1);
  353. crypto_digest_free(d2);
  354. /* Incremental digest code with sha256 */
  355. d1 = crypto_digest256_new(DIGEST_SHA256);
  356. tt_assert(d1);
  357. crypto_digest_add_bytes(d1, "abcdef", 6);
  358. d2 = crypto_digest_dup(d1);
  359. tt_assert(d2);
  360. crypto_digest_add_bytes(d2, "ghijkl", 6);
  361. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  362. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  363. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  364. crypto_digest_assign(d2, d1);
  365. crypto_digest_add_bytes(d2, "mno", 3);
  366. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  367. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  368. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  369. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  370. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  371. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  372. done:
  373. if (d1)
  374. crypto_digest_free(d1);
  375. if (d2)
  376. crypto_digest_free(d2);
  377. tor_free(mem_op_hex_tmp);
  378. }
  379. /** Run unit tests for our public key crypto functions */
  380. static void
  381. test_crypto_pk(void *arg)
  382. {
  383. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  384. char *encoded = NULL;
  385. char data1[1024], data2[1024], data3[1024];
  386. size_t size;
  387. int i, len;
  388. /* Public-key ciphers */
  389. (void)arg;
  390. pk1 = pk_generate(0);
  391. pk2 = crypto_pk_new();
  392. tt_assert(pk1 && pk2);
  393. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  394. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  395. tt_int_op(0,OP_EQ, crypto_pk_cmp_keys(pk1, pk2));
  396. /* comparison between keys and NULL */
  397. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), OP_LT, 0);
  398. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), OP_EQ, 0);
  399. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), OP_GT, 0);
  400. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk1));
  401. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk1));
  402. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk2));
  403. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk2));
  404. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  405. "Hello whirled.", 15,
  406. PK_PKCS1_OAEP_PADDING));
  407. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  408. "Hello whirled.", 15,
  409. PK_PKCS1_OAEP_PADDING));
  410. /* oaep padding should make encryption not match */
  411. tt_mem_op(data1,OP_NE, data2, 128);
  412. tt_int_op(15,OP_EQ,
  413. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  414. PK_PKCS1_OAEP_PADDING,1));
  415. tt_str_op(data3,OP_EQ, "Hello whirled.");
  416. memset(data3, 0, 1024);
  417. tt_int_op(15,OP_EQ,
  418. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  419. PK_PKCS1_OAEP_PADDING,1));
  420. tt_str_op(data3,OP_EQ, "Hello whirled.");
  421. /* Can't decrypt with public key. */
  422. tt_int_op(-1,OP_EQ,
  423. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  424. PK_PKCS1_OAEP_PADDING,1));
  425. /* Try again with bad padding */
  426. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  427. tt_int_op(-1,OP_EQ,
  428. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  429. PK_PKCS1_OAEP_PADDING,1));
  430. /* File operations: save and load private key */
  431. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  432. get_fname("pkey1")));
  433. /* failing case for read: can't read. */
  434. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  435. get_fname("xyzzy")) < 0);
  436. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  437. /* Failing case for read: no key. */
  438. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  439. get_fname("xyzzy")) < 0);
  440. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  441. get_fname("pkey1")));
  442. tt_int_op(15,OP_EQ,
  443. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  444. PK_PKCS1_OAEP_PADDING,1));
  445. /* Now try signing. */
  446. strlcpy(data1, "Ossifrage", 1024);
  447. tt_int_op(128,OP_EQ,
  448. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  449. tt_int_op(10,OP_EQ,
  450. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  451. tt_str_op(data3,OP_EQ, "Ossifrage");
  452. /* Try signing digests. */
  453. tt_int_op(128,OP_EQ, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  454. data1, 10));
  455. tt_int_op(20,OP_EQ,
  456. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  457. tt_int_op(0,OP_EQ,
  458. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  459. tt_int_op(-1,OP_EQ,
  460. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  461. /*XXXX test failed signing*/
  462. /* Try encoding */
  463. crypto_pk_free(pk2);
  464. pk2 = NULL;
  465. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  466. tt_int_op(i, OP_GT, 0);
  467. pk2 = crypto_pk_asn1_decode(data1, i);
  468. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  469. /* Try with hybrid encryption wrappers. */
  470. crypto_rand(data1, 1024);
  471. for (i = 85; i < 140; ++i) {
  472. memset(data2,0,1024);
  473. memset(data3,0,1024);
  474. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  475. data1,i,PK_PKCS1_OAEP_PADDING,0);
  476. tt_int_op(len, OP_GE, 0);
  477. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  478. data2,len,PK_PKCS1_OAEP_PADDING,1);
  479. tt_int_op(len,OP_EQ, i);
  480. tt_mem_op(data1,OP_EQ, data3,i);
  481. }
  482. /* Try copy_full */
  483. crypto_pk_free(pk2);
  484. pk2 = crypto_pk_copy_full(pk1);
  485. tt_assert(pk2 != NULL);
  486. tt_ptr_op(pk1, OP_NE, pk2);
  487. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  488. done:
  489. if (pk1)
  490. crypto_pk_free(pk1);
  491. if (pk2)
  492. crypto_pk_free(pk2);
  493. tor_free(encoded);
  494. }
  495. static void
  496. test_crypto_pk_fingerprints(void *arg)
  497. {
  498. crypto_pk_t *pk = NULL;
  499. char encoded[512];
  500. char d[DIGEST_LEN], d2[DIGEST_LEN];
  501. char fingerprint[FINGERPRINT_LEN+1];
  502. int n;
  503. unsigned i;
  504. char *mem_op_hex_tmp=NULL;
  505. (void)arg;
  506. pk = pk_generate(1);
  507. tt_assert(pk);
  508. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  509. tt_int_op(n, OP_GT, 0);
  510. tt_int_op(n, OP_GT, 128);
  511. tt_int_op(n, OP_LT, 256);
  512. /* Is digest as expected? */
  513. crypto_digest(d, encoded, n);
  514. tt_int_op(0, OP_EQ, crypto_pk_get_digest(pk, d2));
  515. tt_mem_op(d,OP_EQ, d2, DIGEST_LEN);
  516. /* Is fingerprint right? */
  517. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  518. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  519. test_memeq_hex(d, fingerprint);
  520. /* Are spaces right? */
  521. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  522. for (i = 4; i < strlen(fingerprint); i += 5) {
  523. tt_int_op(fingerprint[i], OP_EQ, ' ');
  524. }
  525. tor_strstrip(fingerprint, " ");
  526. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  527. test_memeq_hex(d, fingerprint);
  528. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  529. crypto_digest(d2, d, sizeof(d));
  530. tt_int_op(0, OP_EQ, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  531. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  532. test_memeq_hex(d2, fingerprint);
  533. done:
  534. crypto_pk_free(pk);
  535. tor_free(mem_op_hex_tmp);
  536. }
  537. static void
  538. test_crypto_pk_base64(void *arg)
  539. {
  540. crypto_pk_t *pk1 = NULL;
  541. crypto_pk_t *pk2 = NULL;
  542. char *encoded = NULL;
  543. (void)arg;
  544. /* Test Base64 encoding a key. */
  545. pk1 = pk_generate(0);
  546. tt_assert(pk1);
  547. tt_int_op(0, OP_EQ, crypto_pk_base64_encode(pk1, &encoded));
  548. tt_assert(encoded);
  549. /* Test decoding a valid key. */
  550. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded));
  551. tt_assert(pk2);
  552. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  553. crypto_pk_free(pk2);
  554. /* Test decoding a invalid key (not Base64). */
  555. static const char *invalid_b64 = "The key is in another castle!";
  556. pk2 = crypto_pk_base64_decode(invalid_b64, strlen(invalid_b64));
  557. tt_assert(!pk2);
  558. /* Test decoding a truncated Base64 blob. */
  559. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)/2);
  560. tt_assert(!pk2);
  561. done:
  562. crypto_pk_free(pk1);
  563. crypto_pk_free(pk2);
  564. tor_free(encoded);
  565. }
  566. /** Sanity check for crypto pk digests */
  567. static void
  568. test_crypto_digests(void *arg)
  569. {
  570. crypto_pk_t *k = NULL;
  571. ssize_t r;
  572. digests_t pkey_digests;
  573. char digest[DIGEST_LEN];
  574. (void)arg;
  575. k = crypto_pk_new();
  576. tt_assert(k);
  577. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  578. tt_assert(!r);
  579. r = crypto_pk_get_digest(k, digest);
  580. tt_assert(r == 0);
  581. tt_mem_op(hex_str(digest, DIGEST_LEN),OP_EQ,
  582. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  583. r = crypto_pk_get_all_digests(k, &pkey_digests);
  584. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),OP_EQ,
  585. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  586. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),OP_EQ,
  587. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  588. done:
  589. crypto_pk_free(k);
  590. }
  591. /** Encode src into dest with OpenSSL's EVP Encode interface, returning the
  592. * length of the encoded data in bytes.
  593. */
  594. static int
  595. base64_encode_evp(char *dest, char *src, size_t srclen)
  596. {
  597. const unsigned char *s = (unsigned char*)src;
  598. EVP_ENCODE_CTX ctx;
  599. int len, ret;
  600. EVP_EncodeInit(&ctx);
  601. EVP_EncodeUpdate(&ctx, (unsigned char *)dest, &len, s, (int)srclen);
  602. EVP_EncodeFinal(&ctx, (unsigned char *)(dest + len), &ret);
  603. return ret+ len;
  604. }
  605. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  606. * fingerprints, etc) */
  607. static void
  608. test_crypto_formats(void *arg)
  609. {
  610. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  611. int i, j, idx;
  612. (void)arg;
  613. data1 = tor_malloc(1024);
  614. data2 = tor_malloc(1024);
  615. data3 = tor_malloc(1024);
  616. tt_assert(data1 && data2 && data3);
  617. /* Base64 tests */
  618. memset(data1, 6, 1024);
  619. for (idx = 0; idx < 10; ++idx) {
  620. i = base64_encode(data2, 1024, data1, idx, 0);
  621. tt_int_op(i, OP_GE, 0);
  622. tt_int_op(i, OP_EQ, strlen(data2));
  623. j = base64_decode(data3, 1024, data2, i);
  624. tt_int_op(j,OP_EQ, idx);
  625. tt_mem_op(data3,OP_EQ, data1, idx);
  626. i = base64_encode_nopad(data2, 1024, (uint8_t*)data1, idx);
  627. tt_int_op(i, OP_GE, 0);
  628. tt_int_op(i, OP_EQ, strlen(data2));
  629. tt_assert(! strchr(data2, '='));
  630. j = base64_decode_nopad((uint8_t*)data3, 1024, data2, i);
  631. tt_int_op(j, OP_EQ, idx);
  632. tt_mem_op(data3,OP_EQ, data1, idx);
  633. }
  634. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  635. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  636. i = base64_encode(data2, 1024, data1, 71, 0);
  637. tt_int_op(i, OP_GE, 0);
  638. j = base64_decode(data3, 1024, data2, i);
  639. tt_int_op(j,OP_EQ, 71);
  640. tt_str_op(data3,OP_EQ, data1);
  641. tt_int_op(data2[i], OP_EQ, '\0');
  642. crypto_rand(data1, DIGEST_LEN);
  643. memset(data2, 100, 1024);
  644. digest_to_base64(data2, data1);
  645. tt_int_op(BASE64_DIGEST_LEN,OP_EQ, strlen(data2));
  646. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST_LEN+2]);
  647. memset(data3, 99, 1024);
  648. tt_int_op(digest_from_base64(data3, data2),OP_EQ, 0);
  649. tt_mem_op(data1,OP_EQ, data3, DIGEST_LEN);
  650. tt_int_op(99,OP_EQ, data3[DIGEST_LEN+1]);
  651. tt_assert(digest_from_base64(data3, "###") < 0);
  652. for (i = 0; i < 256; i++) {
  653. /* Test the multiline format Base64 encoder with 0 .. 256 bytes of
  654. * output against OpenSSL.
  655. */
  656. const size_t enclen = base64_encode_size(i, BASE64_ENCODE_MULTILINE);
  657. data1[i] = i;
  658. j = base64_encode(data2, 1024, data1, i, BASE64_ENCODE_MULTILINE);
  659. tt_int_op(j, OP_EQ, enclen);
  660. j = base64_encode_evp(data3, data1, i);
  661. tt_int_op(j, OP_EQ, enclen);
  662. tt_mem_op(data2, OP_EQ, data3, enclen);
  663. tt_int_op(j, OP_EQ, strlen(data2));
  664. }
  665. /* Encoding SHA256 */
  666. crypto_rand(data2, DIGEST256_LEN);
  667. memset(data2, 100, 1024);
  668. digest256_to_base64(data2, data1);
  669. tt_int_op(BASE64_DIGEST256_LEN,OP_EQ, strlen(data2));
  670. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST256_LEN+2]);
  671. memset(data3, 99, 1024);
  672. tt_int_op(digest256_from_base64(data3, data2),OP_EQ, 0);
  673. tt_mem_op(data1,OP_EQ, data3, DIGEST256_LEN);
  674. tt_int_op(99,OP_EQ, data3[DIGEST256_LEN+1]);
  675. /* Base32 tests */
  676. strlcpy(data1, "5chrs", 1024);
  677. /* bit pattern is: [35 63 68 72 73] ->
  678. * [00110101 01100011 01101000 01110010 01110011]
  679. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  680. */
  681. base32_encode(data2, 9, data1, 5);
  682. tt_str_op(data2,OP_EQ, "gvrwq4tt");
  683. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  684. base32_encode(data2, 30, data1, 10);
  685. tt_str_op(data2,OP_EQ, "772w2rfobvomsywe");
  686. /* Base16 tests */
  687. strlcpy(data1, "6chrs\xff", 1024);
  688. base16_encode(data2, 13, data1, 6);
  689. tt_str_op(data2,OP_EQ, "3663687273FF");
  690. strlcpy(data1, "f0d678affc000100", 1024);
  691. i = base16_decode(data2, 8, data1, 16);
  692. tt_int_op(i,OP_EQ, 0);
  693. tt_mem_op(data2,OP_EQ, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  694. /* now try some failing base16 decodes */
  695. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 15)); /* odd input len */
  696. tt_int_op(-1,OP_EQ, base16_decode(data2, 7, data1, 16)); /* dest too short */
  697. strlcpy(data1, "f0dz!8affc000100", 1024);
  698. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 16));
  699. tor_free(data1);
  700. tor_free(data2);
  701. tor_free(data3);
  702. /* Add spaces to fingerprint */
  703. {
  704. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  705. tt_int_op(strlen(data1),OP_EQ, 40);
  706. data2 = tor_malloc(FINGERPRINT_LEN+1);
  707. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  708. tt_str_op(data2, OP_EQ,
  709. "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  710. tor_free(data1);
  711. tor_free(data2);
  712. }
  713. done:
  714. tor_free(data1);
  715. tor_free(data2);
  716. tor_free(data3);
  717. }
  718. /** Test AES-CTR encryption and decryption with IV. */
  719. static void
  720. test_crypto_aes_iv(void *arg)
  721. {
  722. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  723. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  724. char key1[16], key2[16];
  725. ssize_t encrypted_size, decrypted_size;
  726. int use_evp = !strcmp(arg,"evp");
  727. evaluate_evp_for_aes(use_evp);
  728. plain = tor_malloc(4095);
  729. encrypted1 = tor_malloc(4095 + 1 + 16);
  730. encrypted2 = tor_malloc(4095 + 1 + 16);
  731. decrypted1 = tor_malloc(4095 + 1);
  732. decrypted2 = tor_malloc(4095 + 1);
  733. crypto_rand(plain, 4095);
  734. crypto_rand(key1, 16);
  735. crypto_rand(key2, 16);
  736. crypto_rand(plain_1, 1);
  737. crypto_rand(plain_15, 15);
  738. crypto_rand(plain_16, 16);
  739. crypto_rand(plain_17, 17);
  740. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  741. /* Encrypt and decrypt with the same key. */
  742. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  743. plain, 4095);
  744. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  745. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  746. * greater than 0, but its truth is not
  747. * obvious to all analysis tools. */
  748. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  749. encrypted1, encrypted_size);
  750. tt_int_op(decrypted_size,OP_EQ, 4095);
  751. tt_assert(decrypted_size > 0);
  752. tt_mem_op(plain,OP_EQ, decrypted1, 4095);
  753. /* Encrypt a second time (with a new random initialization vector). */
  754. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  755. plain, 4095);
  756. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  757. tt_assert(encrypted_size > 0);
  758. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  759. encrypted2, encrypted_size);
  760. tt_int_op(decrypted_size,OP_EQ, 4095);
  761. tt_assert(decrypted_size > 0);
  762. tt_mem_op(plain,OP_EQ, decrypted2, 4095);
  763. tt_mem_op(encrypted1,OP_NE, encrypted2, encrypted_size);
  764. /* Decrypt with the wrong key. */
  765. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  766. encrypted1, encrypted_size);
  767. tt_int_op(decrypted_size,OP_EQ, 4095);
  768. tt_mem_op(plain,OP_NE, decrypted2, decrypted_size);
  769. /* Alter the initialization vector. */
  770. encrypted1[0] += 42;
  771. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  772. encrypted1, encrypted_size);
  773. tt_int_op(decrypted_size,OP_EQ, 4095);
  774. tt_mem_op(plain,OP_NE, decrypted2, 4095);
  775. /* Special length case: 1. */
  776. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  777. plain_1, 1);
  778. tt_int_op(encrypted_size,OP_EQ, 16 + 1);
  779. tt_assert(encrypted_size > 0);
  780. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  781. encrypted1, encrypted_size);
  782. tt_int_op(decrypted_size,OP_EQ, 1);
  783. tt_assert(decrypted_size > 0);
  784. tt_mem_op(plain_1,OP_EQ, decrypted1, 1);
  785. /* Special length case: 15. */
  786. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  787. plain_15, 15);
  788. tt_int_op(encrypted_size,OP_EQ, 16 + 15);
  789. tt_assert(encrypted_size > 0);
  790. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  791. encrypted1, encrypted_size);
  792. tt_int_op(decrypted_size,OP_EQ, 15);
  793. tt_assert(decrypted_size > 0);
  794. tt_mem_op(plain_15,OP_EQ, decrypted1, 15);
  795. /* Special length case: 16. */
  796. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  797. plain_16, 16);
  798. tt_int_op(encrypted_size,OP_EQ, 16 + 16);
  799. tt_assert(encrypted_size > 0);
  800. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  801. encrypted1, encrypted_size);
  802. tt_int_op(decrypted_size,OP_EQ, 16);
  803. tt_assert(decrypted_size > 0);
  804. tt_mem_op(plain_16,OP_EQ, decrypted1, 16);
  805. /* Special length case: 17. */
  806. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  807. plain_17, 17);
  808. tt_int_op(encrypted_size,OP_EQ, 16 + 17);
  809. tt_assert(encrypted_size > 0);
  810. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  811. encrypted1, encrypted_size);
  812. tt_int_op(decrypted_size,OP_EQ, 17);
  813. tt_assert(decrypted_size > 0);
  814. tt_mem_op(plain_17,OP_EQ, decrypted1, 17);
  815. done:
  816. /* Free memory. */
  817. tor_free(plain);
  818. tor_free(encrypted1);
  819. tor_free(encrypted2);
  820. tor_free(decrypted1);
  821. tor_free(decrypted2);
  822. }
  823. /** Test base32 decoding. */
  824. static void
  825. test_crypto_base32_decode(void *arg)
  826. {
  827. char plain[60], encoded[96 + 1], decoded[60];
  828. int res;
  829. (void)arg;
  830. crypto_rand(plain, 60);
  831. /* Encode and decode a random string. */
  832. base32_encode(encoded, 96 + 1, plain, 60);
  833. res = base32_decode(decoded, 60, encoded, 96);
  834. tt_int_op(res,OP_EQ, 0);
  835. tt_mem_op(plain,OP_EQ, decoded, 60);
  836. /* Encode, uppercase, and decode a random string. */
  837. base32_encode(encoded, 96 + 1, plain, 60);
  838. tor_strupper(encoded);
  839. res = base32_decode(decoded, 60, encoded, 96);
  840. tt_int_op(res,OP_EQ, 0);
  841. tt_mem_op(plain,OP_EQ, decoded, 60);
  842. /* Change encoded string and decode. */
  843. if (encoded[0] == 'A' || encoded[0] == 'a')
  844. encoded[0] = 'B';
  845. else
  846. encoded[0] = 'A';
  847. res = base32_decode(decoded, 60, encoded, 96);
  848. tt_int_op(res,OP_EQ, 0);
  849. tt_mem_op(plain,OP_NE, decoded, 60);
  850. /* Bad encodings. */
  851. encoded[0] = '!';
  852. res = base32_decode(decoded, 60, encoded, 96);
  853. tt_int_op(0, OP_GT, res);
  854. done:
  855. ;
  856. }
  857. static void
  858. test_crypto_kdf_TAP(void *arg)
  859. {
  860. uint8_t key_material[100];
  861. int r;
  862. char *mem_op_hex_tmp = NULL;
  863. (void)arg;
  864. #define EXPAND(s) \
  865. r = crypto_expand_key_material_TAP( \
  866. (const uint8_t*)(s), strlen(s), \
  867. key_material, 100)
  868. /* Test vectors generated with a little python script; feel free to write
  869. * your own. */
  870. memset(key_material, 0, sizeof(key_material));
  871. EXPAND("");
  872. tt_int_op(r, OP_EQ, 0);
  873. test_memeq_hex(key_material,
  874. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  875. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  876. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  877. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  878. EXPAND("Tor");
  879. tt_int_op(r, OP_EQ, 0);
  880. test_memeq_hex(key_material,
  881. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  882. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  883. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  884. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  885. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  886. tt_int_op(r, OP_EQ, 0);
  887. test_memeq_hex(key_material,
  888. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  889. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  890. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  891. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  892. done:
  893. tor_free(mem_op_hex_tmp);
  894. #undef EXPAND
  895. }
  896. static void
  897. test_crypto_hkdf_sha256(void *arg)
  898. {
  899. uint8_t key_material[100];
  900. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  901. const size_t salt_len = strlen((char*)salt);
  902. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  903. const size_t m_expand_len = strlen((char*)m_expand);
  904. int r;
  905. char *mem_op_hex_tmp = NULL;
  906. (void)arg;
  907. #define EXPAND(s) \
  908. r = crypto_expand_key_material_rfc5869_sha256( \
  909. (const uint8_t*)(s), strlen(s), \
  910. salt, salt_len, \
  911. m_expand, m_expand_len, \
  912. key_material, 100)
  913. /* Test vectors generated with ntor_ref.py */
  914. memset(key_material, 0, sizeof(key_material));
  915. EXPAND("");
  916. tt_int_op(r, OP_EQ, 0);
  917. test_memeq_hex(key_material,
  918. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  919. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  920. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  921. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  922. EXPAND("Tor");
  923. tt_int_op(r, OP_EQ, 0);
  924. test_memeq_hex(key_material,
  925. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  926. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  927. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  928. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  929. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  930. tt_int_op(r, OP_EQ, 0);
  931. test_memeq_hex(key_material,
  932. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  933. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  934. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  935. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  936. done:
  937. tor_free(mem_op_hex_tmp);
  938. #undef EXPAND
  939. }
  940. static void
  941. test_crypto_curve25519_impl(void *arg)
  942. {
  943. /* adapted from curve25519_donna, which adapted it from test-curve25519
  944. version 20050915, by D. J. Bernstein, Public domain. */
  945. const int randomize_high_bit = (arg != NULL);
  946. #ifdef SLOW_CURVE25519_TEST
  947. const int loop_max=10000;
  948. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  949. "7e0329f4dd2819f5f32d130f1296b500";
  950. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  951. "e0544770bc7de853b38f9100489e3e79";
  952. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  953. "bd13861475516bc2cd2b6e005e805064";
  954. #else
  955. const int loop_max=200;
  956. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  957. "c6a1037d74cceb3712e9206871dcf654";
  958. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  959. "8e3ee1a63c7d14274ea5d4c67f065467";
  960. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  961. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  962. #endif
  963. unsigned char e1k[32];
  964. unsigned char e2k[32];
  965. unsigned char e1e2k[32];
  966. unsigned char e2e1k[32];
  967. unsigned char e1[32] = {3};
  968. unsigned char e2[32] = {5};
  969. unsigned char k[32] = {9};
  970. int loop, i;
  971. char *mem_op_hex_tmp = NULL;
  972. for (loop = 0; loop < loop_max; ++loop) {
  973. curve25519_impl(e1k,e1,k);
  974. curve25519_impl(e2e1k,e2,e1k);
  975. curve25519_impl(e2k,e2,k);
  976. if (randomize_high_bit) {
  977. /* We require that the high bit of the public key be ignored. So if
  978. * we're doing this variant test, we randomize the high bit of e2k, and
  979. * make sure that the handshake still works out the same as it would
  980. * otherwise. */
  981. uint8_t byte;
  982. crypto_rand((char*)&byte, 1);
  983. e2k[31] |= (byte & 0x80);
  984. }
  985. curve25519_impl(e1e2k,e1,e2k);
  986. tt_mem_op(e1e2k,OP_EQ, e2e1k, 32);
  987. if (loop == loop_max-1) {
  988. break;
  989. }
  990. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  991. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  992. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  993. }
  994. test_memeq_hex(e1, e1_expected);
  995. test_memeq_hex(e2k, e2k_expected);
  996. test_memeq_hex(e1e2k, e1e2k_expected);
  997. done:
  998. tor_free(mem_op_hex_tmp);
  999. }
  1000. static void
  1001. test_crypto_curve25519_basepoint(void *arg)
  1002. {
  1003. uint8_t secret[32];
  1004. uint8_t public1[32];
  1005. uint8_t public2[32];
  1006. const int iters = 2048;
  1007. int i;
  1008. (void) arg;
  1009. for (i = 0; i < iters; ++i) {
  1010. crypto_rand((char*)secret, 32);
  1011. curve25519_set_impl_params(1); /* Use optimization */
  1012. curve25519_basepoint_impl(public1, secret);
  1013. curve25519_set_impl_params(0); /* Disable optimization */
  1014. curve25519_basepoint_impl(public2, secret);
  1015. tt_mem_op(public1, OP_EQ, public2, 32);
  1016. }
  1017. done:
  1018. ;
  1019. }
  1020. static void
  1021. test_crypto_curve25519_wrappers(void *arg)
  1022. {
  1023. curve25519_public_key_t pubkey1, pubkey2;
  1024. curve25519_secret_key_t seckey1, seckey2;
  1025. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1026. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1027. (void)arg;
  1028. /* Test a simple handshake, serializing and deserializing some stuff. */
  1029. curve25519_secret_key_generate(&seckey1, 0);
  1030. curve25519_secret_key_generate(&seckey2, 1);
  1031. curve25519_public_key_generate(&pubkey1, &seckey1);
  1032. curve25519_public_key_generate(&pubkey2, &seckey2);
  1033. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1034. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1035. curve25519_handshake(output1, &seckey1, &pubkey2);
  1036. curve25519_handshake(output2, &seckey2, &pubkey1);
  1037. tt_mem_op(output1,OP_EQ, output2, sizeof(output1));
  1038. done:
  1039. ;
  1040. }
  1041. static void
  1042. test_crypto_curve25519_encode(void *arg)
  1043. {
  1044. curve25519_secret_key_t seckey;
  1045. curve25519_public_key_t key1, key2, key3;
  1046. char buf[64];
  1047. (void)arg;
  1048. curve25519_secret_key_generate(&seckey, 0);
  1049. curve25519_public_key_generate(&key1, &seckey);
  1050. tt_int_op(0, OP_EQ, curve25519_public_to_base64(buf, &key1));
  1051. tt_int_op(CURVE25519_BASE64_PADDED_LEN, OP_EQ, strlen(buf));
  1052. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key2, buf));
  1053. tt_mem_op(key1.public_key,OP_EQ, key2.public_key, CURVE25519_PUBKEY_LEN);
  1054. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1055. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, OP_EQ, strlen(buf));
  1056. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1057. tt_mem_op(key1.public_key,OP_EQ, key3.public_key, CURVE25519_PUBKEY_LEN);
  1058. /* Now try bogus parses. */
  1059. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1060. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1061. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1062. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1063. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1064. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1065. done:
  1066. ;
  1067. }
  1068. static void
  1069. test_crypto_curve25519_persist(void *arg)
  1070. {
  1071. curve25519_keypair_t keypair, keypair2;
  1072. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1073. char *tag = NULL;
  1074. char *content = NULL;
  1075. const char *cp;
  1076. struct stat st;
  1077. size_t taglen;
  1078. (void)arg;
  1079. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&keypair, 0));
  1080. tt_int_op(0,OP_EQ,
  1081. curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1082. tt_int_op(0,OP_EQ,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1083. tt_str_op(tag,OP_EQ,"testing");
  1084. tor_free(tag);
  1085. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1086. keypair2.pubkey.public_key,
  1087. CURVE25519_PUBKEY_LEN);
  1088. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1089. keypair2.seckey.secret_key,
  1090. CURVE25519_SECKEY_LEN);
  1091. content = read_file_to_str(fname, RFTS_BIN, &st);
  1092. tt_assert(content);
  1093. taglen = strlen("== c25519v1: testing ==");
  1094. tt_u64_op((uint64_t)st.st_size, OP_EQ,
  1095. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1096. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1097. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1098. cp = content + 32;
  1099. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1100. cp,
  1101. CURVE25519_SECKEY_LEN);
  1102. cp += CURVE25519_SECKEY_LEN;
  1103. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1104. cp,
  1105. CURVE25519_SECKEY_LEN);
  1106. tor_free(fname);
  1107. fname = tor_strdup(get_fname("bogus_keypair"));
  1108. tt_int_op(-1, OP_EQ,
  1109. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1110. tor_free(tag);
  1111. content[69] ^= 0xff;
  1112. tt_int_op(0, OP_EQ,
  1113. write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1114. tt_int_op(-1, OP_EQ,
  1115. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1116. done:
  1117. tor_free(fname);
  1118. tor_free(content);
  1119. tor_free(tag);
  1120. }
  1121. static void
  1122. test_crypto_ed25519_simple(void *arg)
  1123. {
  1124. ed25519_keypair_t kp1, kp2;
  1125. ed25519_public_key_t pub1, pub2;
  1126. ed25519_secret_key_t sec1, sec2;
  1127. ed25519_signature_t sig1, sig2;
  1128. const uint8_t msg[] =
  1129. "GNU will be able to run Unix programs, "
  1130. "but will not be identical to Unix.";
  1131. const uint8_t msg2[] =
  1132. "Microsoft Windows extends the features of the DOS operating system, "
  1133. "yet is compatible with most existing applications that run under DOS.";
  1134. size_t msg_len = strlen((const char*)msg);
  1135. size_t msg2_len = strlen((const char*)msg2);
  1136. (void)arg;
  1137. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec1, 0));
  1138. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec2, 1));
  1139. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub1, &sec1));
  1140. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec1));
  1141. tt_mem_op(pub1.pubkey, OP_EQ, pub2.pubkey, sizeof(pub1.pubkey));
  1142. tt_assert(ed25519_pubkey_eq(&pub1, &pub2));
  1143. tt_assert(ed25519_pubkey_eq(&pub1, &pub1));
  1144. memcpy(&kp1.pubkey, &pub1, sizeof(pub1));
  1145. memcpy(&kp1.seckey, &sec1, sizeof(sec1));
  1146. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp1));
  1147. tt_int_op(0, OP_EQ, ed25519_sign(&sig2, msg, msg_len, &kp1));
  1148. /* Ed25519 signatures are deterministic */
  1149. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, sizeof(sig1.sig));
  1150. /* Basic signature is valid. */
  1151. tt_int_op(0, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1152. /* Altered signature doesn't work. */
  1153. sig1.sig[0] ^= 3;
  1154. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1155. /* Wrong public key doesn't work. */
  1156. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec2));
  1157. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub2));
  1158. tt_assert(! ed25519_pubkey_eq(&pub1, &pub2));
  1159. /* Wrong message doesn't work. */
  1160. tt_int_op(0, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub1));
  1161. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len-1, &pub1));
  1162. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg2, msg2_len, &pub1));
  1163. /* Batch signature checking works with some bad. */
  1164. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp2, 0));
  1165. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp2));
  1166. {
  1167. ed25519_checkable_t ch[] = {
  1168. { &pub1, sig2, msg, msg_len }, /*ok*/
  1169. { &pub1, sig2, msg, msg_len-1 }, /*bad*/
  1170. { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/
  1171. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1172. };
  1173. int okay[4];
  1174. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(okay, ch, 4));
  1175. tt_int_op(okay[0], OP_EQ, 1);
  1176. tt_int_op(okay[1], OP_EQ, 0);
  1177. tt_int_op(okay[2], OP_EQ, 0);
  1178. tt_int_op(okay[3], OP_EQ, 1);
  1179. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(NULL, ch, 4));
  1180. }
  1181. /* Batch signature checking works with all good. */
  1182. {
  1183. ed25519_checkable_t ch[] = {
  1184. { &pub1, sig2, msg, msg_len }, /*ok*/
  1185. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1186. };
  1187. int okay[2];
  1188. tt_int_op(0, OP_EQ, ed25519_checksig_batch(okay, ch, 2));
  1189. tt_int_op(okay[0], OP_EQ, 1);
  1190. tt_int_op(okay[1], OP_EQ, 1);
  1191. tt_int_op(0, OP_EQ, ed25519_checksig_batch(NULL, ch, 2));
  1192. }
  1193. done:
  1194. ;
  1195. }
  1196. static void
  1197. test_crypto_ed25519_test_vectors(void *arg)
  1198. {
  1199. char *mem_op_hex_tmp=NULL;
  1200. int i;
  1201. struct {
  1202. const char *sk;
  1203. const char *pk;
  1204. const char *sig;
  1205. const char *msg;
  1206. } items[] = {
  1207. /* These test vectors were generated with the "ref" implementation of
  1208. * ed25519 from SUPERCOP-20130419 */
  1209. { "4c6574277320686f706520746865726520617265206e6f206275677320696e20",
  1210. "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87",
  1211. "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51"
  1212. "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06",
  1213. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1214. "204e554c2d7465726d696e617465642e"
  1215. },
  1216. { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74",
  1217. "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac",
  1218. "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28"
  1219. "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601",
  1220. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1221. "204e554c2d7465726d696e617465642e"
  1222. },
  1223. { "6578706f73656420627920456e676c697368207465787420617320696e707574",
  1224. "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706",
  1225. "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad"
  1226. "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209",
  1227. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1228. "204e554c2d7465726d696e617465642e"
  1229. },
  1230. /* These come from "sign.input" in ed25519's page */
  1231. { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9",
  1232. "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257",
  1233. "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258"
  1234. "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e",
  1235. "5a8d9d0a22357e6655f9c785"
  1236. },
  1237. { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800",
  1238. "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd",
  1239. "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d"
  1240. "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c",
  1241. "b87d3813e03f58cf19fd0b6395"
  1242. },
  1243. { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738",
  1244. "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291",
  1245. "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0"
  1246. "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06",
  1247. "55c7fa434f5ed8cdec2b7aeac173",
  1248. },
  1249. { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300",
  1250. "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5",
  1251. "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395"
  1252. "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00",
  1253. "0a688e79be24f866286d4646b5d81c"
  1254. },
  1255. { NULL, NULL, NULL, NULL}
  1256. };
  1257. (void)arg;
  1258. for (i = 0; items[i].pk; ++i) {
  1259. ed25519_keypair_t kp;
  1260. ed25519_signature_t sig;
  1261. uint8_t sk_seed[32];
  1262. uint8_t *msg;
  1263. size_t msg_len;
  1264. base16_decode((char*)sk_seed, sizeof(sk_seed),
  1265. items[i].sk, 64);
  1266. ed25519_secret_key_from_seed(&kp.seckey, sk_seed);
  1267. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&kp.pubkey, &kp.seckey));
  1268. test_memeq_hex(kp.pubkey.pubkey, items[i].pk);
  1269. msg_len = strlen(items[i].msg) / 2;
  1270. msg = tor_malloc(msg_len);
  1271. base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg));
  1272. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, msg_len, &kp));
  1273. test_memeq_hex(sig.sig, items[i].sig);
  1274. tor_free(msg);
  1275. }
  1276. done:
  1277. tor_free(mem_op_hex_tmp);
  1278. }
  1279. static void
  1280. test_crypto_ed25519_encode(void *arg)
  1281. {
  1282. char buf[ED25519_SIG_BASE64_LEN+1];
  1283. ed25519_keypair_t kp;
  1284. ed25519_public_key_t pk;
  1285. ed25519_signature_t sig1, sig2;
  1286. char *mem_op_hex_tmp = NULL;
  1287. (void) arg;
  1288. /* Test roundtrip. */
  1289. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, 0));
  1290. tt_int_op(0, OP_EQ, ed25519_public_to_base64(buf, &kp.pubkey));
  1291. tt_int_op(ED25519_BASE64_LEN, OP_EQ, strlen(buf));
  1292. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, buf));
  1293. tt_mem_op(kp.pubkey.pubkey, OP_EQ, pk.pubkey, ED25519_PUBKEY_LEN);
  1294. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, (const uint8_t*)"ABC", 3, &kp));
  1295. tt_int_op(0, OP_EQ, ed25519_signature_to_base64(buf, &sig1));
  1296. tt_int_op(0, OP_EQ, ed25519_signature_from_base64(&sig2, buf));
  1297. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, ED25519_SIG_LEN);
  1298. /* Test known value. */
  1299. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk,
  1300. "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM"));
  1301. test_memeq_hex(pk.pubkey,
  1302. "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3");
  1303. done:
  1304. tor_free(mem_op_hex_tmp);
  1305. }
  1306. static void
  1307. test_crypto_ed25519_convert(void *arg)
  1308. {
  1309. const uint8_t msg[] =
  1310. "The eyes are not here / There are no eyes here.";
  1311. const int N = 30;
  1312. int i;
  1313. (void)arg;
  1314. for (i = 0; i < N; ++i) {
  1315. curve25519_keypair_t curve25519_keypair;
  1316. ed25519_keypair_t ed25519_keypair;
  1317. ed25519_public_key_t ed25519_pubkey;
  1318. int bit=0;
  1319. ed25519_signature_t sig;
  1320. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&curve25519_keypair, i&1));
  1321. tt_int_op(0,OP_EQ,ed25519_keypair_from_curve25519_keypair(
  1322. &ed25519_keypair, &bit, &curve25519_keypair));
  1323. tt_int_op(0,OP_EQ,ed25519_public_key_from_curve25519_public_key(
  1324. &ed25519_pubkey, &curve25519_keypair.pubkey, bit));
  1325. tt_mem_op(ed25519_pubkey.pubkey, OP_EQ, ed25519_keypair.pubkey.pubkey, 32);
  1326. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair));
  1327. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1328. &ed25519_pubkey));
  1329. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  1330. &ed25519_pubkey));
  1331. sig.sig[0] ^= 15;
  1332. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1333. &ed25519_pubkey));
  1334. }
  1335. done:
  1336. ;
  1337. }
  1338. static void
  1339. test_crypto_ed25519_blinding(void *arg)
  1340. {
  1341. const uint8_t msg[] =
  1342. "Eyes I dare not meet in dreams / In death's dream kingdom";
  1343. const int N = 30;
  1344. int i;
  1345. (void)arg;
  1346. for (i = 0; i < N; ++i) {
  1347. uint8_t blinding[32];
  1348. ed25519_keypair_t ed25519_keypair;
  1349. ed25519_keypair_t ed25519_keypair_blinded;
  1350. ed25519_public_key_t ed25519_pubkey_blinded;
  1351. ed25519_signature_t sig;
  1352. crypto_rand((char*) blinding, sizeof(blinding));
  1353. tt_int_op(0,OP_EQ,ed25519_keypair_generate(&ed25519_keypair, 0));
  1354. tt_int_op(0,OP_EQ,ed25519_keypair_blind(&ed25519_keypair_blinded,
  1355. &ed25519_keypair, blinding));
  1356. tt_int_op(0,OP_EQ,ed25519_public_blind(&ed25519_pubkey_blinded,
  1357. &ed25519_keypair.pubkey, blinding));
  1358. tt_mem_op(ed25519_pubkey_blinded.pubkey, OP_EQ,
  1359. ed25519_keypair_blinded.pubkey.pubkey, 32);
  1360. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg),
  1361. &ed25519_keypair_blinded));
  1362. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1363. &ed25519_pubkey_blinded));
  1364. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  1365. &ed25519_pubkey_blinded));
  1366. sig.sig[0] ^= 15;
  1367. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1368. &ed25519_pubkey_blinded));
  1369. }
  1370. done:
  1371. ;
  1372. }
  1373. static void
  1374. test_crypto_ed25519_testvectors(void *arg)
  1375. {
  1376. unsigned i;
  1377. char *mem_op_hex_tmp = NULL;
  1378. (void)arg;
  1379. for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) {
  1380. uint8_t sk[32];
  1381. ed25519_secret_key_t esk;
  1382. ed25519_public_key_t pk, blind_pk, pkfromcurve;
  1383. ed25519_keypair_t keypair, blind_keypair;
  1384. curve25519_keypair_t curvekp;
  1385. uint8_t blinding_param[32];
  1386. ed25519_signature_t sig;
  1387. int sign;
  1388. #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s))
  1389. #define EQ(a,h) test_memeq_hex((const char*)(a), (h))
  1390. tt_int_op(0, OP_EQ, DECODE(sk, ED25519_SECRET_KEYS[i]));
  1391. tt_int_op(0, OP_EQ, DECODE(blinding_param, ED25519_BLINDING_PARAMS[i]));
  1392. tt_int_op(0, OP_EQ, ed25519_secret_key_from_seed(&esk, sk));
  1393. EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]);
  1394. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &esk));
  1395. EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]);
  1396. memcpy(&curvekp.seckey.secret_key, esk.seckey, 32);
  1397. curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey);
  1398. tt_int_op(0, OP_EQ,
  1399. ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp));
  1400. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  1401. &pkfromcurve, &curvekp.pubkey, sign));
  1402. tt_mem_op(keypair.pubkey.pubkey, OP_EQ, pkfromcurve.pubkey, 32);
  1403. EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]);
  1404. /* Self-signing */
  1405. memcpy(&keypair.seckey, &esk, sizeof(esk));
  1406. memcpy(&keypair.pubkey, &pk, sizeof(pk));
  1407. tt_int_op(0, OP_EQ, ed25519_sign(&sig, pk.pubkey, 32, &keypair));
  1408. EQ(sig.sig, ED25519_SELF_SIGNATURES[i]);
  1409. /* Blinding */
  1410. tt_int_op(0, OP_EQ,
  1411. ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param));
  1412. tt_int_op(0, OP_EQ,
  1413. ed25519_public_blind(&blind_pk, &pk, blinding_param));
  1414. EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]);
  1415. EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]);
  1416. tt_mem_op(blind_pk.pubkey, OP_EQ, blind_keypair.pubkey.pubkey, 32);
  1417. #undef DECODE
  1418. #undef EQ
  1419. }
  1420. done:
  1421. tor_free(mem_op_hex_tmp);
  1422. }
  1423. static void
  1424. test_crypto_siphash(void *arg)
  1425. {
  1426. /* From the reference implementation, taking
  1427. k = 00 01 02 ... 0f
  1428. and in = 00; 00 01; 00 01 02; ...
  1429. */
  1430. const uint8_t VECTORS[64][8] =
  1431. {
  1432. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  1433. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  1434. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  1435. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  1436. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  1437. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  1438. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  1439. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  1440. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  1441. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  1442. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  1443. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  1444. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  1445. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  1446. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  1447. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  1448. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  1449. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  1450. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  1451. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  1452. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  1453. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  1454. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  1455. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  1456. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  1457. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  1458. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  1459. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  1460. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  1461. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  1462. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  1463. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  1464. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  1465. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  1466. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  1467. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  1468. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  1469. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  1470. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  1471. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  1472. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  1473. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  1474. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  1475. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  1476. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  1477. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  1478. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  1479. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  1480. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  1481. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  1482. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  1483. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  1484. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  1485. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  1486. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  1487. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  1488. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  1489. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  1490. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  1491. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  1492. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  1493. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  1494. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  1495. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  1496. };
  1497. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  1498. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  1499. uint8_t input[64];
  1500. int i, j;
  1501. (void)arg;
  1502. for (i = 0; i < 64; ++i)
  1503. input[i] = i;
  1504. for (i = 0; i < 64; ++i) {
  1505. uint64_t r = siphash24(input, i, &K);
  1506. for (j = 0; j < 8; ++j) {
  1507. tt_int_op( (r >> (j*8)) & 0xff, OP_EQ, VECTORS[i][j]);
  1508. }
  1509. }
  1510. done:
  1511. ;
  1512. }
  1513. #define CRYPTO_LEGACY(name) \
  1514. { #name, test_crypto_ ## name , 0, NULL, NULL }
  1515. struct testcase_t crypto_tests[] = {
  1516. CRYPTO_LEGACY(formats),
  1517. CRYPTO_LEGACY(rng),
  1518. { "rng_range", test_crypto_rng_range, 0, NULL, NULL },
  1519. { "aes_AES", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"aes" },
  1520. { "aes_EVP", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"evp" },
  1521. CRYPTO_LEGACY(sha),
  1522. CRYPTO_LEGACY(pk),
  1523. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  1524. { "pk_base64", test_crypto_pk_base64, TT_FORK, NULL, NULL },
  1525. CRYPTO_LEGACY(digests),
  1526. CRYPTO_LEGACY(dh),
  1527. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  1528. (void*)"aes" },
  1529. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  1530. (void*)"evp" },
  1531. CRYPTO_LEGACY(base32_decode),
  1532. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  1533. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  1534. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  1535. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  1536. { "curve25519_basepoint",
  1537. test_crypto_curve25519_basepoint, TT_FORK, NULL, NULL },
  1538. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  1539. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  1540. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  1541. { "ed25519_simple", test_crypto_ed25519_simple, 0, NULL, NULL },
  1542. { "ed25519_test_vectors", test_crypto_ed25519_test_vectors, 0, NULL, NULL },
  1543. { "ed25519_encode", test_crypto_ed25519_encode, 0, NULL, NULL },
  1544. { "ed25519_convert", test_crypto_ed25519_convert, 0, NULL, NULL },
  1545. { "ed25519_blinding", test_crypto_ed25519_blinding, 0, NULL, NULL },
  1546. { "ed25519_testvectors", test_crypto_ed25519_testvectors, 0, NULL, NULL },
  1547. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  1548. END_OF_TESTCASES
  1549. };