crypto_s2k.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. /* Copyright (c) 2001, Matej Pfajfar.
  2. * Copyright (c) 2001-2004, Roger Dingledine.
  3. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  4. * Copyright (c) 2007-2015, The Tor Project, Inc. */
  5. /* See LICENSE for licensing information */
  6. #define CRYPTO_S2K_PRIVATE
  7. #include "crypto.h"
  8. #include "util.h"
  9. #include "compat.h"
  10. #include "crypto_s2k.h"
  11. #include <openssl/evp.h>
  12. #ifdef HAVE_LIBSCRYPT_H
  13. #define HAVE_SCRYPT
  14. #include <libscrypt.h>
  15. #endif
  16. /* Encoded secrets take the form:
  17. u8 type;
  18. u8 salt_and_parameters[depends on type];
  19. u8 key[depends on type];
  20. As a special case, if the encoded secret is exactly 29 bytes long,
  21. type 0 is understood.
  22. Recognized types are:
  23. 00 -- RFC2440. salt_and_parameters is 9 bytes. key is 20 bytes.
  24. salt_and_parameters is 8 bytes random salt,
  25. 1 byte iteration info.
  26. 01 -- PKBDF2_SHA1. salt_and_parameters is 17 bytes. key is 20 bytes.
  27. salt_and_parameters is 16 bytes random salt,
  28. 1 byte iteration info.
  29. 02 -- SCRYPT_SALSA208_SHA256. salt_and_parameters is 18 bytes. key is
  30. 32 bytes.
  31. salt_and_parameters is 18 bytes random salt, 2 bytes iteration
  32. info.
  33. */
  34. #define S2K_TYPE_RFC2440 0
  35. #define S2K_TYPE_PBKDF2 1
  36. #define S2K_TYPE_SCRYPT 2
  37. #define PBKDF2_SPEC_LEN 17
  38. #define PBKDF2_KEY_LEN 20
  39. #define SCRYPT_SPEC_LEN 18
  40. #define SCRYPT_KEY_LEN 32
  41. /** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
  42. * specifier part of it, without the prefix type byte. */
  43. static int
  44. secret_to_key_spec_len(uint8_t type)
  45. {
  46. switch (type) {
  47. case S2K_TYPE_RFC2440:
  48. return S2K_RFC2440_SPECIFIER_LEN;
  49. case S2K_TYPE_PBKDF2:
  50. return PBKDF2_SPEC_LEN;
  51. case S2K_TYPE_SCRYPT:
  52. return SCRYPT_SPEC_LEN;
  53. default:
  54. return -1;
  55. }
  56. }
  57. /** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
  58. * its preferred output. */
  59. static int
  60. secret_to_key_key_len(uint8_t type)
  61. {
  62. switch (type) {
  63. case S2K_TYPE_RFC2440:
  64. return DIGEST_LEN;
  65. case S2K_TYPE_PBKDF2:
  66. return DIGEST_LEN;
  67. case S2K_TYPE_SCRYPT:
  68. return DIGEST256_LEN;
  69. default:
  70. return -1;
  71. }
  72. }
  73. /** Given a specifier in <b>spec_and_key</b> of length
  74. * <b>spec_and_key_len</b>, along with its prefix algorithm ID byte, and along
  75. * with a key if <b>key_included</b> is true, check whether the whole
  76. * specifier-and-key is of valid length, and return the algorithm type if it
  77. * is. Set *<b>legacy_out</b> to 1 iff this is a legacy password hash or
  78. * legacy specifier. Return an error code on failure.
  79. */
  80. static int
  81. secret_to_key_get_type(const uint8_t *spec_and_key, size_t spec_and_key_len,
  82. int key_included, int *legacy_out)
  83. {
  84. size_t legacy_len = S2K_RFC2440_SPECIFIER_LEN;
  85. uint8_t type;
  86. int total_len;
  87. if (key_included)
  88. legacy_len += DIGEST_LEN;
  89. if (spec_and_key_len == legacy_len) {
  90. *legacy_out = 1;
  91. return S2K_TYPE_RFC2440;
  92. }
  93. *legacy_out = 0;
  94. if (spec_and_key_len == 0)
  95. return S2K_BAD_LEN;
  96. type = spec_and_key[0];
  97. total_len = secret_to_key_spec_len(type);
  98. if (total_len < 0)
  99. return S2K_BAD_ALGORITHM;
  100. if (key_included) {
  101. int keylen = secret_to_key_key_len(type);
  102. if (keylen < 0)
  103. return S2K_BAD_ALGORITHM;
  104. total_len += keylen;
  105. }
  106. if ((size_t)total_len + 1 == spec_and_key_len)
  107. return type;
  108. else
  109. return S2K_BAD_LEN;
  110. }
  111. /**
  112. * Write a new random s2k specifier of type <b>type</b>, without prefixing
  113. * type byte, to <b>spec_out</b>, which must have enough room. May adjust
  114. * parameter choice based on <b>flags</b>.
  115. */
  116. static int
  117. make_specifier(uint8_t *spec_out, uint8_t type, unsigned flags)
  118. {
  119. int speclen = secret_to_key_spec_len(type);
  120. if (speclen < 0)
  121. return S2K_BAD_ALGORITHM;
  122. crypto_rand((char*)spec_out, speclen);
  123. switch (type) {
  124. case S2K_TYPE_RFC2440:
  125. /* Hash 64 k of data. */
  126. spec_out[S2K_RFC2440_SPECIFIER_LEN-1] = 96;
  127. break;
  128. case S2K_TYPE_PBKDF2:
  129. /* 131 K iterations */
  130. spec_out[PBKDF2_SPEC_LEN-1] = 17;
  131. break;
  132. case S2K_TYPE_SCRYPT:
  133. if (flags & S2K_FLAG_LOW_MEM) {
  134. /* N = 1<<12 */
  135. spec_out[SCRYPT_SPEC_LEN-2] = 12;
  136. } else {
  137. /* N = 1<<15 */
  138. spec_out[SCRYPT_SPEC_LEN-2] = 15;
  139. }
  140. /* r = 8; p = 2. */
  141. spec_out[SCRYPT_SPEC_LEN-1] = (3u << 4) | (1u << 0);
  142. break;
  143. default:
  144. tor_fragile_assert();
  145. return S2K_BAD_ALGORITHM;
  146. }
  147. return speclen;
  148. }
  149. /** Implement RFC2440-style iterated-salted S2K conversion: convert the
  150. * <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte
  151. * <b>key_out</b>. As in RFC2440, the first 8 bytes of s2k_specifier
  152. * are a salt; the 9th byte describes how much iteration to do.
  153. * If <b>key_out_len</b> &gt; DIGEST_LEN, use HDKF to expand the result.
  154. */
  155. void
  156. secret_to_key_rfc2440(char *key_out, size_t key_out_len, const char *secret,
  157. size_t secret_len, const char *s2k_specifier)
  158. {
  159. crypto_digest_t *d;
  160. uint8_t c;
  161. size_t count, tmplen;
  162. char *tmp;
  163. uint8_t buf[DIGEST_LEN];
  164. tor_assert(key_out_len < SIZE_T_CEILING);
  165. #define EXPBIAS 6
  166. c = s2k_specifier[8];
  167. count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS);
  168. #undef EXPBIAS
  169. d = crypto_digest_new();
  170. tmplen = 8+secret_len;
  171. tmp = tor_malloc(tmplen);
  172. memcpy(tmp,s2k_specifier,8);
  173. memcpy(tmp+8,secret,secret_len);
  174. secret_len += 8;
  175. while (count) {
  176. if (count >= secret_len) {
  177. crypto_digest_add_bytes(d, tmp, secret_len);
  178. count -= secret_len;
  179. } else {
  180. crypto_digest_add_bytes(d, tmp, count);
  181. count = 0;
  182. }
  183. }
  184. crypto_digest_get_digest(d, (char*)buf, sizeof(buf));
  185. if (key_out_len <= sizeof(buf)) {
  186. memcpy(key_out, buf, key_out_len);
  187. } else {
  188. crypto_expand_key_material_rfc5869_sha256(buf, DIGEST_LEN,
  189. (const uint8_t*)s2k_specifier, 8,
  190. (const uint8_t*)"EXPAND", 6,
  191. (uint8_t*)key_out, key_out_len);
  192. }
  193. memwipe(tmp, 0, tmplen);
  194. memwipe(buf, 0, sizeof(buf));
  195. tor_free(tmp);
  196. crypto_digest_free(d);
  197. }
  198. /**
  199. * Helper: given a valid specifier without prefix type byte in <b>spec</b>,
  200. * whose length must be correct, and given a secret passphrase <b>secret</b>
  201. * of length <b>secret_len</b>, compute the key and store it into
  202. * <b>key_out</b>, which must have enough room for secret_to_key_key_len(type)
  203. * bytes. Return the number of bytes written on success and an error code
  204. * on failure.
  205. */
  206. STATIC int
  207. secret_to_key_compute_key(uint8_t *key_out, size_t key_out_len,
  208. const uint8_t *spec, size_t spec_len,
  209. const char *secret, size_t secret_len,
  210. int type)
  211. {
  212. int rv;
  213. if (key_out_len > INT_MAX)
  214. return S2K_BAD_LEN;
  215. switch (type) {
  216. case S2K_TYPE_RFC2440:
  217. secret_to_key_rfc2440((char*)key_out, key_out_len, secret, secret_len,
  218. (const char*)spec);
  219. return (int)key_out_len;
  220. case S2K_TYPE_PBKDF2: {
  221. uint8_t log_iters;
  222. if (spec_len < 1 || secret_len > INT_MAX || spec_len > INT_MAX)
  223. return S2K_BAD_LEN;
  224. log_iters = spec[spec_len-1];
  225. if (log_iters > 31)
  226. return S2K_BAD_PARAMS;
  227. rv = PKCS5_PBKDF2_HMAC_SHA1(secret, (int)secret_len,
  228. spec, (int)spec_len-1,
  229. (1<<log_iters),
  230. (int)key_out_len, key_out);
  231. if (rv < 0)
  232. return S2K_FAILED;
  233. return (int)key_out_len;
  234. }
  235. case S2K_TYPE_SCRYPT: {
  236. #ifdef HAVE_SCRYPT
  237. uint8_t log_N, log_r, log_p;
  238. uint64_t N;
  239. uint32_t r, p;
  240. if (spec_len < 2)
  241. return S2K_BAD_LEN;
  242. log_N = spec[spec_len-2];
  243. log_r = (spec[spec_len-1]) >> 4;
  244. log_p = (spec[spec_len-1]) & 15;
  245. if (log_N > 63)
  246. return S2K_BAD_PARAMS;
  247. N = ((uint64_t)1) << log_N;
  248. r = 1u << log_r;
  249. p = 1u << log_p;
  250. rv = libscrypt_scrypt((const uint8_t*)secret, secret_len,
  251. spec, spec_len-2, N, r, p, key_out, key_out_len);
  252. if (rv != 0)
  253. return S2K_FAILED;
  254. return (int)key_out_len;
  255. #else
  256. return S2K_NO_SCRYPT_SUPPORT;
  257. #endif
  258. }
  259. default:
  260. return S2K_BAD_ALGORITHM;
  261. }
  262. }
  263. /**
  264. * Given a specifier previously constructed with secret_to_key_make_specifier
  265. * in <b>spec</b> of length <b>spec_len</b>, and a secret password in
  266. * <b>secret</b> of length <b>secret_len</b>, generate <b>key_out_len</b>
  267. * bytes of cryptographic material in <b>key_out</b>. The native output of
  268. * the secret-to-key function will be truncated if key_out_len is short, and
  269. * expanded with HKDF if key_out_len is long. Returns S2K_OKAY on success,
  270. * and an error code on failure.
  271. */
  272. int
  273. secret_to_key_derivekey(uint8_t *key_out, size_t key_out_len,
  274. const uint8_t *spec, size_t spec_len,
  275. const char *secret, size_t secret_len)
  276. {
  277. int legacy_format = 0;
  278. int type = secret_to_key_get_type(spec, spec_len, 0, &legacy_format);
  279. int r;
  280. if (type < 0)
  281. return type;
  282. #ifndef HAVE_SCRYPT
  283. if (type == S2K_TYPE_SCRYPT)
  284. return S2K_NO_SCRYPT_SUPPORT;
  285. #endif
  286. if (! legacy_format) {
  287. ++spec;
  288. --spec_len;
  289. }
  290. r = secret_to_key_compute_key(key_out, key_out_len, spec, spec_len,
  291. secret, secret_len, type);
  292. if (r < 0)
  293. return r;
  294. else
  295. return S2K_OKAY;
  296. }
  297. /**
  298. * Construct a new s2k algorithm specifier and salt in <b>buf</b>, according
  299. * to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>. Up to
  300. * <b>buf_len</b> bytes of storage may be used in <b>buf</b>. Return the
  301. * number of bytes used on success and an error code on failure.
  302. */
  303. int
  304. secret_to_key_make_specifier(uint8_t *buf, size_t buf_len, unsigned flags)
  305. {
  306. int rv;
  307. int spec_len;
  308. #ifdef HAVE_SCRYPT
  309. uint8_t type = S2K_TYPE_SCRYPT;
  310. #else
  311. uint8_t type = S2K_TYPE_RFC2440;
  312. #endif
  313. if (flags & S2K_FLAG_NO_SCRYPT)
  314. type = S2K_TYPE_RFC2440;
  315. if (flags & S2K_FLAG_USE_PBKDF2)
  316. type = S2K_TYPE_PBKDF2;
  317. spec_len = secret_to_key_spec_len(type);
  318. if ((int)buf_len < spec_len + 1)
  319. return S2K_TRUNCATED;
  320. buf[0] = type;
  321. rv = make_specifier(buf+1, type, flags);
  322. if (rv < 0)
  323. return rv;
  324. else
  325. return rv + 1;
  326. }
  327. /**
  328. * Hash a passphrase from <b>secret</b> of length <b>secret_len</b>, according
  329. * to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>, and store the
  330. * hash along with salt and hashing parameters into <b>buf</b>. Up to
  331. * <b>buf_len</b> bytes of storage may be used in <b>buf</b>. Set
  332. * *<b>len_out</b> to the number of bytes used and return S2K_OKAY on success;
  333. * and return an error code on failure.
  334. */
  335. int
  336. secret_to_key_new(uint8_t *buf,
  337. size_t buf_len,
  338. size_t *len_out,
  339. const char *secret, size_t secret_len,
  340. unsigned flags)
  341. {
  342. int key_len;
  343. int spec_len;
  344. int type;
  345. int rv;
  346. spec_len = secret_to_key_make_specifier(buf, buf_len, flags);
  347. if (spec_len < 0)
  348. return spec_len;
  349. type = buf[0];
  350. key_len = secret_to_key_key_len(type);
  351. if (key_len < 0)
  352. return key_len;
  353. if ((int)buf_len < key_len + spec_len)
  354. return S2K_TRUNCATED;
  355. rv = secret_to_key_compute_key(buf + spec_len, key_len,
  356. buf + 1, spec_len-1,
  357. secret, secret_len, type);
  358. if (rv < 0)
  359. return rv;
  360. *len_out = spec_len + key_len;
  361. return S2K_OKAY;
  362. }
  363. /**
  364. * Given a hashed passphrase in <b>spec_and_key</b> of length
  365. * <b>spec_and_key_len</b> as generated by secret_to_key_new(), verify whether
  366. * it is a hash of the passphrase <b>secret</b> of length <b>secret_len</b>.
  367. * Return S2K_OKAY on a match, S2K_BAD_SECRET on a well-formed hash that
  368. * doesn't match this secret, and another error code on other errors.
  369. */
  370. int
  371. secret_to_key_check(const uint8_t *spec_and_key, size_t spec_and_key_len,
  372. const char *secret, size_t secret_len)
  373. {
  374. int is_legacy = 0;
  375. int type = secret_to_key_get_type(spec_and_key, spec_and_key_len,
  376. 1, &is_legacy);
  377. uint8_t buf[32];
  378. int spec_len;
  379. int key_len;
  380. int rv;
  381. if (type < 0)
  382. return type;
  383. if (! is_legacy) {
  384. spec_and_key++;
  385. spec_and_key_len--;
  386. }
  387. spec_len = secret_to_key_spec_len(type);
  388. key_len = secret_to_key_key_len(type);
  389. tor_assert(spec_len > 0);
  390. tor_assert(key_len > 0);
  391. tor_assert(key_len <= (int) sizeof(buf));
  392. tor_assert((int)spec_and_key_len == spec_len + key_len);
  393. rv = secret_to_key_compute_key(buf, key_len,
  394. spec_and_key, spec_len,
  395. secret, secret_len, type);
  396. if (rv < 0)
  397. goto done;
  398. if (tor_memeq(buf, spec_and_key + spec_len, key_len))
  399. rv = S2K_OKAY;
  400. else
  401. rv = S2K_BAD_SECRET;
  402. done:
  403. memwipe(buf, 0, sizeof(buf));
  404. return rv;
  405. }