test_crypto.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2013, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #define CRYPTO_S2K_PRIVATE
  8. #include "or.h"
  9. #include "test.h"
  10. #include "aes.h"
  11. #include "util.h"
  12. #include "siphash.h"
  13. #ifdef CURVE25519_ENABLED
  14. #include "crypto_curve25519.h"
  15. #endif
  16. #include "crypto_ed25519.h"
  17. #include "ed25519_vectors.inc"
  18. #include "crypto_s2k.h"
  19. #include "crypto_pwbox.h"
  20. extern const char AUTHORITY_SIGNKEY_3[];
  21. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  22. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  23. /** Run unit tests for Diffie-Hellman functionality. */
  24. static void
  25. test_crypto_dh(void *arg)
  26. {
  27. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  28. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  29. char p1[DH_BYTES];
  30. char p2[DH_BYTES];
  31. char s1[DH_BYTES];
  32. char s2[DH_BYTES];
  33. ssize_t s1len, s2len;
  34. (void)arg;
  35. tt_int_op(crypto_dh_get_bytes(dh1),==, DH_BYTES);
  36. tt_int_op(crypto_dh_get_bytes(dh2),==, DH_BYTES);
  37. memset(p1, 0, DH_BYTES);
  38. memset(p2, 0, DH_BYTES);
  39. tt_mem_op(p1,==, p2, DH_BYTES);
  40. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  41. tt_mem_op(p1,!=, p2, DH_BYTES);
  42. tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  43. tt_mem_op(p1,!=, p2, DH_BYTES);
  44. memset(s1, 0, DH_BYTES);
  45. memset(s2, 0xFF, DH_BYTES);
  46. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  47. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  48. tt_assert(s1len > 0);
  49. tt_int_op(s1len,==, s2len);
  50. tt_mem_op(s1,==, s2, s1len);
  51. {
  52. /* XXXX Now fabricate some bad values and make sure they get caught,
  53. * Check 0, 1, N-1, >= N, etc.
  54. */
  55. }
  56. done:
  57. crypto_dh_free(dh1);
  58. crypto_dh_free(dh2);
  59. }
  60. /** Run unit tests for our random number generation function and its wrappers.
  61. */
  62. static void
  63. test_crypto_rng(void *arg)
  64. {
  65. int i, j, allok;
  66. char data1[100], data2[100];
  67. double d;
  68. /* Try out RNG. */
  69. (void)arg;
  70. tt_assert(! crypto_seed_rng(0));
  71. crypto_rand(data1, 100);
  72. crypto_rand(data2, 100);
  73. tt_mem_op(data1,!=, data2,100);
  74. allok = 1;
  75. for (i = 0; i < 100; ++i) {
  76. uint64_t big;
  77. char *host;
  78. j = crypto_rand_int(100);
  79. if (j < 0 || j >= 100)
  80. allok = 0;
  81. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  82. if (big >= (U64_LITERAL(1)<<40))
  83. allok = 0;
  84. big = crypto_rand_uint64(U64_LITERAL(5));
  85. if (big >= 5)
  86. allok = 0;
  87. d = crypto_rand_double();
  88. tt_assert(d >= 0);
  89. tt_assert(d < 1.0);
  90. host = crypto_random_hostname(3,8,"www.",".onion");
  91. if (strcmpstart(host,"www.") ||
  92. strcmpend(host,".onion") ||
  93. strlen(host) < 13 ||
  94. strlen(host) > 18)
  95. allok = 0;
  96. tor_free(host);
  97. }
  98. tt_assert(allok);
  99. done:
  100. ;
  101. }
  102. /** Run unit tests for our AES functionality */
  103. static void
  104. test_crypto_aes(void *arg)
  105. {
  106. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  107. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  108. int i, j;
  109. char *mem_op_hex_tmp=NULL;
  110. int use_evp = !strcmp(arg,"evp");
  111. evaluate_evp_for_aes(use_evp);
  112. evaluate_ctr_for_aes();
  113. data1 = tor_malloc(1024);
  114. data2 = tor_malloc(1024);
  115. data3 = tor_malloc(1024);
  116. /* Now, test encryption and decryption with stream cipher. */
  117. data1[0]='\0';
  118. for (i = 1023; i>0; i -= 35)
  119. strncat(data1, "Now is the time for all good onions", i);
  120. memset(data2, 0, 1024);
  121. memset(data3, 0, 1024);
  122. env1 = crypto_cipher_new(NULL);
  123. tt_ptr_op(env1, !=, NULL);
  124. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  125. tt_ptr_op(env2, !=, NULL);
  126. /* Try encrypting 512 chars. */
  127. crypto_cipher_encrypt(env1, data2, data1, 512);
  128. crypto_cipher_decrypt(env2, data3, data2, 512);
  129. tt_mem_op(data1,==, data3, 512);
  130. tt_mem_op(data1,!=, data2, 512);
  131. /* Now encrypt 1 at a time, and get 1 at a time. */
  132. for (j = 512; j < 560; ++j) {
  133. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  134. }
  135. for (j = 512; j < 560; ++j) {
  136. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  137. }
  138. tt_mem_op(data1,==, data3, 560);
  139. /* Now encrypt 3 at a time, and get 5 at a time. */
  140. for (j = 560; j < 1024-5; j += 3) {
  141. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  142. }
  143. for (j = 560; j < 1024-5; j += 5) {
  144. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  145. }
  146. tt_mem_op(data1,==, data3, 1024-5);
  147. /* Now make sure that when we encrypt with different chunk sizes, we get
  148. the same results. */
  149. crypto_cipher_free(env2);
  150. env2 = NULL;
  151. memset(data3, 0, 1024);
  152. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  153. tt_ptr_op(env2, !=, NULL);
  154. for (j = 0; j < 1024-16; j += 17) {
  155. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  156. }
  157. for (j= 0; j < 1024-16; ++j) {
  158. if (data2[j] != data3[j]) {
  159. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  160. }
  161. }
  162. tt_mem_op(data2,==, data3, 1024-16);
  163. crypto_cipher_free(env1);
  164. env1 = NULL;
  165. crypto_cipher_free(env2);
  166. env2 = NULL;
  167. /* NIST test vector for aes. */
  168. /* IV starts at 0 */
  169. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  170. "\x00\x00\x00\x00\x00\x00\x00\x00");
  171. crypto_cipher_encrypt(env1, data1,
  172. "\x00\x00\x00\x00\x00\x00\x00\x00"
  173. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  174. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  175. /* Now test rollover. All these values are originally from a python
  176. * script. */
  177. crypto_cipher_free(env1);
  178. env1 = crypto_cipher_new_with_iv(
  179. "\x80\x00\x00\x00\x00\x00\x00\x00"
  180. "\x00\x00\x00\x00\x00\x00\x00\x00",
  181. "\x00\x00\x00\x00\x00\x00\x00\x00"
  182. "\xff\xff\xff\xff\xff\xff\xff\xff");
  183. memset(data2, 0, 1024);
  184. crypto_cipher_encrypt(env1, data1, data2, 32);
  185. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  186. "cdd0b917dbc7186908a6bfb5ffd574d3");
  187. crypto_cipher_free(env1);
  188. env1 = crypto_cipher_new_with_iv(
  189. "\x80\x00\x00\x00\x00\x00\x00\x00"
  190. "\x00\x00\x00\x00\x00\x00\x00\x00",
  191. "\x00\x00\x00\x00\xff\xff\xff\xff"
  192. "\xff\xff\xff\xff\xff\xff\xff\xff");
  193. memset(data2, 0, 1024);
  194. crypto_cipher_encrypt(env1, data1, data2, 32);
  195. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  196. "3e63c721df790d2c6469cc1953a3ffac");
  197. crypto_cipher_free(env1);
  198. env1 = crypto_cipher_new_with_iv(
  199. "\x80\x00\x00\x00\x00\x00\x00\x00"
  200. "\x00\x00\x00\x00\x00\x00\x00\x00",
  201. "\xff\xff\xff\xff\xff\xff\xff\xff"
  202. "\xff\xff\xff\xff\xff\xff\xff\xff");
  203. memset(data2, 0, 1024);
  204. crypto_cipher_encrypt(env1, data1, data2, 32);
  205. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  206. "0EDD33D3C621E546455BD8BA1418BEC8");
  207. /* Now check rollover on inplace cipher. */
  208. crypto_cipher_free(env1);
  209. env1 = crypto_cipher_new_with_iv(
  210. "\x80\x00\x00\x00\x00\x00\x00\x00"
  211. "\x00\x00\x00\x00\x00\x00\x00\x00",
  212. "\xff\xff\xff\xff\xff\xff\xff\xff"
  213. "\xff\xff\xff\xff\xff\xff\xff\xff");
  214. crypto_cipher_crypt_inplace(env1, data2, 64);
  215. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  216. "0EDD33D3C621E546455BD8BA1418BEC8"
  217. "93e2c5243d6839eac58503919192f7ae"
  218. "1908e67cafa08d508816659c2e693191");
  219. crypto_cipher_free(env1);
  220. env1 = crypto_cipher_new_with_iv(
  221. "\x80\x00\x00\x00\x00\x00\x00\x00"
  222. "\x00\x00\x00\x00\x00\x00\x00\x00",
  223. "\xff\xff\xff\xff\xff\xff\xff\xff"
  224. "\xff\xff\xff\xff\xff\xff\xff\xff");
  225. crypto_cipher_crypt_inplace(env1, data2, 64);
  226. tt_assert(tor_mem_is_zero(data2, 64));
  227. done:
  228. tor_free(mem_op_hex_tmp);
  229. if (env1)
  230. crypto_cipher_free(env1);
  231. if (env2)
  232. crypto_cipher_free(env2);
  233. tor_free(data1);
  234. tor_free(data2);
  235. tor_free(data3);
  236. }
  237. /** Run unit tests for our SHA-1 functionality */
  238. static void
  239. test_crypto_sha(void *arg)
  240. {
  241. crypto_digest_t *d1 = NULL, *d2 = NULL;
  242. int i;
  243. char key[160];
  244. char digest[32];
  245. char data[50];
  246. char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
  247. char *mem_op_hex_tmp=NULL;
  248. /* Test SHA-1 with a test vector from the specification. */
  249. (void)arg;
  250. i = crypto_digest(data, "abc", 3);
  251. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  252. tt_int_op(i, ==, 0);
  253. /* Test SHA-256 with a test vector from the specification. */
  254. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  255. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  256. "96177A9CB410FF61F20015AD");
  257. tt_int_op(i, ==, 0);
  258. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  259. /* Case empty (wikipedia) */
  260. crypto_hmac_sha256(digest, "", 0, "", 0);
  261. tt_str_op(hex_str(digest, 32),==,
  262. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  263. /* Case quick-brown (wikipedia) */
  264. crypto_hmac_sha256(digest, "key", 3,
  265. "The quick brown fox jumps over the lazy dog", 43);
  266. tt_str_op(hex_str(digest, 32),==,
  267. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  268. /* "Test Case 1" from RFC 4231 */
  269. memset(key, 0x0b, 20);
  270. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  271. test_memeq_hex(digest,
  272. "b0344c61d8db38535ca8afceaf0bf12b"
  273. "881dc200c9833da726e9376c2e32cff7");
  274. /* "Test Case 2" from RFC 4231 */
  275. memset(key, 0x0b, 20);
  276. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  277. test_memeq_hex(digest,
  278. "5bdcc146bf60754e6a042426089575c7"
  279. "5a003f089d2739839dec58b964ec3843");
  280. /* "Test case 3" from RFC 4231 */
  281. memset(key, 0xaa, 20);
  282. memset(data, 0xdd, 50);
  283. crypto_hmac_sha256(digest, key, 20, data, 50);
  284. test_memeq_hex(digest,
  285. "773ea91e36800e46854db8ebd09181a7"
  286. "2959098b3ef8c122d9635514ced565fe");
  287. /* "Test case 4" from RFC 4231 */
  288. base16_decode(key, 25,
  289. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  290. memset(data, 0xcd, 50);
  291. crypto_hmac_sha256(digest, key, 25, data, 50);
  292. test_memeq_hex(digest,
  293. "82558a389a443c0ea4cc819899f2083a"
  294. "85f0faa3e578f8077a2e3ff46729665b");
  295. /* "Test case 5" from RFC 4231 */
  296. memset(key, 0x0c, 20);
  297. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  298. test_memeq_hex(digest,
  299. "a3b6167473100ee06e0c796c2955552b");
  300. /* "Test case 6" from RFC 4231 */
  301. memset(key, 0xaa, 131);
  302. crypto_hmac_sha256(digest, key, 131,
  303. "Test Using Larger Than Block-Size Key - Hash Key First",
  304. 54);
  305. test_memeq_hex(digest,
  306. "60e431591ee0b67f0d8a26aacbf5b77f"
  307. "8e0bc6213728c5140546040f0ee37f54");
  308. /* "Test case 7" from RFC 4231 */
  309. memset(key, 0xaa, 131);
  310. crypto_hmac_sha256(digest, key, 131,
  311. "This is a test using a larger than block-size key and a "
  312. "larger than block-size data. The key needs to be hashed "
  313. "before being used by the HMAC algorithm.", 152);
  314. test_memeq_hex(digest,
  315. "9b09ffa71b942fcb27635fbcd5b0e944"
  316. "bfdc63644f0713938a7f51535c3a35e2");
  317. /* Incremental digest code. */
  318. d1 = crypto_digest_new();
  319. tt_assert(d1);
  320. crypto_digest_add_bytes(d1, "abcdef", 6);
  321. d2 = crypto_digest_dup(d1);
  322. tt_assert(d2);
  323. crypto_digest_add_bytes(d2, "ghijkl", 6);
  324. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  325. crypto_digest(d_out2, "abcdefghijkl", 12);
  326. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  327. crypto_digest_assign(d2, d1);
  328. crypto_digest_add_bytes(d2, "mno", 3);
  329. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  330. crypto_digest(d_out2, "abcdefmno", 9);
  331. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  332. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  333. crypto_digest(d_out2, "abcdef", 6);
  334. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  335. crypto_digest_free(d1);
  336. crypto_digest_free(d2);
  337. /* Incremental digest code with sha256 */
  338. d1 = crypto_digest256_new(DIGEST_SHA256);
  339. tt_assert(d1);
  340. crypto_digest_add_bytes(d1, "abcdef", 6);
  341. d2 = crypto_digest_dup(d1);
  342. tt_assert(d2);
  343. crypto_digest_add_bytes(d2, "ghijkl", 6);
  344. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  345. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  346. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  347. crypto_digest_assign(d2, d1);
  348. crypto_digest_add_bytes(d2, "mno", 3);
  349. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  350. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  351. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  352. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  353. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  354. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  355. done:
  356. if (d1)
  357. crypto_digest_free(d1);
  358. if (d2)
  359. crypto_digest_free(d2);
  360. tor_free(mem_op_hex_tmp);
  361. }
  362. /** Run unit tests for our public key crypto functions */
  363. static void
  364. test_crypto_pk(void *arg)
  365. {
  366. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  367. char *encoded = NULL;
  368. char data1[1024], data2[1024], data3[1024];
  369. size_t size;
  370. int i, len;
  371. /* Public-key ciphers */
  372. (void)arg;
  373. pk1 = pk_generate(0);
  374. pk2 = crypto_pk_new();
  375. tt_assert(pk1 && pk2);
  376. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  377. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  378. tt_int_op(0,==, crypto_pk_cmp_keys(pk1, pk2));
  379. /* comparison between keys and NULL */
  380. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), <, 0);
  381. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), ==, 0);
  382. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), >, 0);
  383. tt_int_op(128,==, crypto_pk_keysize(pk1));
  384. tt_int_op(1024,==, crypto_pk_num_bits(pk1));
  385. tt_int_op(128,==, crypto_pk_keysize(pk2));
  386. tt_int_op(1024,==, crypto_pk_num_bits(pk2));
  387. tt_int_op(128,==, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  388. "Hello whirled.", 15,
  389. PK_PKCS1_OAEP_PADDING));
  390. tt_int_op(128,==, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  391. "Hello whirled.", 15,
  392. PK_PKCS1_OAEP_PADDING));
  393. /* oaep padding should make encryption not match */
  394. tt_mem_op(data1,!=, data2, 128);
  395. tt_int_op(15,==,
  396. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  397. PK_PKCS1_OAEP_PADDING,1));
  398. tt_str_op(data3,==, "Hello whirled.");
  399. memset(data3, 0, 1024);
  400. tt_int_op(15,==,
  401. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  402. PK_PKCS1_OAEP_PADDING,1));
  403. tt_str_op(data3,==, "Hello whirled.");
  404. /* Can't decrypt with public key. */
  405. tt_int_op(-1,==,
  406. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  407. PK_PKCS1_OAEP_PADDING,1));
  408. /* Try again with bad padding */
  409. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  410. tt_int_op(-1,==,
  411. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  412. PK_PKCS1_OAEP_PADDING,1));
  413. /* File operations: save and load private key */
  414. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  415. get_fname("pkey1")));
  416. /* failing case for read: can't read. */
  417. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  418. get_fname("xyzzy")) < 0);
  419. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  420. /* Failing case for read: no key. */
  421. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  422. get_fname("xyzzy")) < 0);
  423. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  424. get_fname("pkey1")));
  425. tt_int_op(15,==,
  426. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  427. PK_PKCS1_OAEP_PADDING,1));
  428. /* Now try signing. */
  429. strlcpy(data1, "Ossifrage", 1024);
  430. tt_int_op(128,==,
  431. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  432. tt_int_op(10,==,
  433. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  434. tt_str_op(data3,==, "Ossifrage");
  435. /* Try signing digests. */
  436. tt_int_op(128,==, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  437. data1, 10));
  438. tt_int_op(20,==,
  439. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  440. tt_int_op(0,==,
  441. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  442. tt_int_op(-1,==,
  443. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  444. /*XXXX test failed signing*/
  445. /* Try encoding */
  446. crypto_pk_free(pk2);
  447. pk2 = NULL;
  448. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  449. tt_int_op(i, >, 0);
  450. pk2 = crypto_pk_asn1_decode(data1, i);
  451. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  452. /* Try with hybrid encryption wrappers. */
  453. crypto_rand(data1, 1024);
  454. for (i = 85; i < 140; ++i) {
  455. memset(data2,0,1024);
  456. memset(data3,0,1024);
  457. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  458. data1,i,PK_PKCS1_OAEP_PADDING,0);
  459. tt_int_op(len, >=, 0);
  460. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  461. data2,len,PK_PKCS1_OAEP_PADDING,1);
  462. tt_int_op(len,==, i);
  463. tt_mem_op(data1,==, data3,i);
  464. }
  465. /* Try copy_full */
  466. crypto_pk_free(pk2);
  467. pk2 = crypto_pk_copy_full(pk1);
  468. tt_assert(pk2 != NULL);
  469. tt_ptr_op(pk1, !=, pk2);
  470. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  471. done:
  472. if (pk1)
  473. crypto_pk_free(pk1);
  474. if (pk2)
  475. crypto_pk_free(pk2);
  476. tor_free(encoded);
  477. }
  478. static void
  479. test_crypto_pk_fingerprints(void *arg)
  480. {
  481. crypto_pk_t *pk = NULL;
  482. char encoded[512];
  483. char d[DIGEST_LEN], d2[DIGEST_LEN];
  484. char fingerprint[FINGERPRINT_LEN+1];
  485. int n;
  486. unsigned i;
  487. char *mem_op_hex_tmp=NULL;
  488. (void)arg;
  489. pk = pk_generate(1);
  490. tt_assert(pk);
  491. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  492. tt_int_op(n, >, 0);
  493. tt_int_op(n, >, 128);
  494. tt_int_op(n, <, 256);
  495. /* Is digest as expected? */
  496. crypto_digest(d, encoded, n);
  497. tt_int_op(0, ==, crypto_pk_get_digest(pk, d2));
  498. tt_mem_op(d,==, d2, DIGEST_LEN);
  499. /* Is fingerprint right? */
  500. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  501. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  502. test_memeq_hex(d, fingerprint);
  503. /* Are spaces right? */
  504. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  505. for (i = 4; i < strlen(fingerprint); i += 5) {
  506. tt_int_op(fingerprint[i], ==, ' ');
  507. }
  508. tor_strstrip(fingerprint, " ");
  509. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  510. test_memeq_hex(d, fingerprint);
  511. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  512. crypto_digest(d2, d, sizeof(d));
  513. tt_int_op(0, ==, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  514. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  515. test_memeq_hex(d2, fingerprint);
  516. done:
  517. crypto_pk_free(pk);
  518. tor_free(mem_op_hex_tmp);
  519. }
  520. /** Sanity check for crypto pk digests */
  521. static void
  522. test_crypto_digests(void *arg)
  523. {
  524. crypto_pk_t *k = NULL;
  525. ssize_t r;
  526. digests_t pkey_digests;
  527. char digest[DIGEST_LEN];
  528. (void)arg;
  529. k = crypto_pk_new();
  530. tt_assert(k);
  531. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  532. tt_assert(!r);
  533. r = crypto_pk_get_digest(k, digest);
  534. tt_assert(r == 0);
  535. tt_mem_op(hex_str(digest, DIGEST_LEN),==,
  536. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  537. r = crypto_pk_get_all_digests(k, &pkey_digests);
  538. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),==,
  539. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  540. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),==,
  541. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  542. done:
  543. crypto_pk_free(k);
  544. }
  545. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  546. * fingerprints, etc) */
  547. static void
  548. test_crypto_formats(void *arg)
  549. {
  550. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  551. int i, j, idx;
  552. (void)arg;
  553. data1 = tor_malloc(1024);
  554. data2 = tor_malloc(1024);
  555. data3 = tor_malloc(1024);
  556. tt_assert(data1 && data2 && data3);
  557. /* Base64 tests */
  558. memset(data1, 6, 1024);
  559. for (idx = 0; idx < 10; ++idx) {
  560. i = base64_encode(data2, 1024, data1, idx);
  561. tt_int_op(i, >=, 0);
  562. j = base64_decode(data3, 1024, data2, i);
  563. tt_int_op(j,==, idx);
  564. tt_mem_op(data3,==, data1, idx);
  565. }
  566. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  567. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  568. i = base64_encode(data2, 1024, data1, 71);
  569. tt_int_op(i, >=, 0);
  570. j = base64_decode(data3, 1024, data2, i);
  571. tt_int_op(j,==, 71);
  572. tt_str_op(data3,==, data1);
  573. tt_int_op(data2[i], ==, '\0');
  574. crypto_rand(data1, DIGEST_LEN);
  575. memset(data2, 100, 1024);
  576. digest_to_base64(data2, data1);
  577. tt_int_op(BASE64_DIGEST_LEN,==, strlen(data2));
  578. tt_int_op(100,==, data2[BASE64_DIGEST_LEN+2]);
  579. memset(data3, 99, 1024);
  580. tt_int_op(digest_from_base64(data3, data2),==, 0);
  581. tt_mem_op(data1,==, data3, DIGEST_LEN);
  582. tt_int_op(99,==, data3[DIGEST_LEN+1]);
  583. tt_assert(digest_from_base64(data3, "###") < 0);
  584. /* Encoding SHA256 */
  585. crypto_rand(data2, DIGEST256_LEN);
  586. memset(data2, 100, 1024);
  587. digest256_to_base64(data2, data1);
  588. tt_int_op(BASE64_DIGEST256_LEN,==, strlen(data2));
  589. tt_int_op(100,==, data2[BASE64_DIGEST256_LEN+2]);
  590. memset(data3, 99, 1024);
  591. tt_int_op(digest256_from_base64(data3, data2),==, 0);
  592. tt_mem_op(data1,==, data3, DIGEST256_LEN);
  593. tt_int_op(99,==, data3[DIGEST256_LEN+1]);
  594. /* Base32 tests */
  595. strlcpy(data1, "5chrs", 1024);
  596. /* bit pattern is: [35 63 68 72 73] ->
  597. * [00110101 01100011 01101000 01110010 01110011]
  598. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  599. */
  600. base32_encode(data2, 9, data1, 5);
  601. tt_str_op(data2,==, "gvrwq4tt");
  602. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  603. base32_encode(data2, 30, data1, 10);
  604. tt_str_op(data2,==, "772w2rfobvomsywe");
  605. /* Base16 tests */
  606. strlcpy(data1, "6chrs\xff", 1024);
  607. base16_encode(data2, 13, data1, 6);
  608. tt_str_op(data2,==, "3663687273FF");
  609. strlcpy(data1, "f0d678affc000100", 1024);
  610. i = base16_decode(data2, 8, data1, 16);
  611. tt_int_op(i,==, 0);
  612. tt_mem_op(data2,==, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  613. /* now try some failing base16 decodes */
  614. tt_int_op(-1,==, base16_decode(data2, 8, data1, 15)); /* odd input len */
  615. tt_int_op(-1,==, base16_decode(data2, 7, data1, 16)); /* dest too short */
  616. strlcpy(data1, "f0dz!8affc000100", 1024);
  617. tt_int_op(-1,==, base16_decode(data2, 8, data1, 16));
  618. tor_free(data1);
  619. tor_free(data2);
  620. tor_free(data3);
  621. /* Add spaces to fingerprint */
  622. {
  623. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  624. tt_int_op(strlen(data1),==, 40);
  625. data2 = tor_malloc(FINGERPRINT_LEN+1);
  626. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  627. tt_str_op(data2,==, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  628. tor_free(data1);
  629. tor_free(data2);
  630. }
  631. done:
  632. tor_free(data1);
  633. tor_free(data2);
  634. tor_free(data3);
  635. }
  636. /** Run unit tests for our secret-to-key passphrase hashing functionality. */
  637. static void
  638. test_crypto_s2k_rfc2440(void *arg)
  639. {
  640. char buf[29];
  641. char buf2[29];
  642. char *buf3 = NULL;
  643. int i;
  644. (void)arg;
  645. memset(buf, 0, sizeof(buf));
  646. memset(buf2, 0, sizeof(buf2));
  647. buf3 = tor_malloc(65536);
  648. memset(buf3, 0, 65536);
  649. secret_to_key_rfc2440(buf+9, 20, "", 0, buf);
  650. crypto_digest(buf2+9, buf3, 1024);
  651. tt_mem_op(buf,==, buf2, 29);
  652. memcpy(buf,"vrbacrda",8);
  653. memcpy(buf2,"vrbacrda",8);
  654. buf[8] = 96;
  655. buf2[8] = 96;
  656. secret_to_key_rfc2440(buf+9, 20, "12345678", 8, buf);
  657. for (i = 0; i < 65536; i += 16) {
  658. memcpy(buf3+i, "vrbacrda12345678", 16);
  659. }
  660. crypto_digest(buf2+9, buf3, 65536);
  661. tt_mem_op(buf,==, buf2, 29);
  662. done:
  663. tor_free(buf3);
  664. }
  665. static void
  666. run_s2k_tests(const unsigned flags, const unsigned type,
  667. int speclen, const int keylen, int legacy)
  668. {
  669. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN], buf3[S2K_MAXLEN];
  670. int r;
  671. size_t sz;
  672. const char pw1[] = "You can't come in here unless you say swordfish!";
  673. const char pw2[] = "Now, I give you one more guess.";
  674. r = secret_to_key_new(buf, sizeof(buf), &sz,
  675. pw1, strlen(pw1), flags);
  676. tt_int_op(r, ==, S2K_OKAY);
  677. tt_int_op(buf[0], ==, type);
  678. tt_int_op(sz, ==, keylen + speclen);
  679. if (legacy) {
  680. memmove(buf, buf+1, sz-1);
  681. --sz;
  682. --speclen;
  683. }
  684. tt_int_op(S2K_OKAY, ==,
  685. secret_to_key_check(buf, sz, pw1, strlen(pw1)));
  686. tt_int_op(S2K_BAD_SECRET, ==,
  687. secret_to_key_check(buf, sz, pw2, strlen(pw2)));
  688. /* Move key to buf2, and clear it. */
  689. memset(buf3, 0, sizeof(buf3));
  690. memcpy(buf2, buf+speclen, keylen);
  691. memset(buf+speclen, 0, sz - speclen);
  692. /* Derivekey should produce the same results. */
  693. tt_int_op(S2K_OKAY, ==,
  694. secret_to_key_derivekey(buf3, keylen, buf, speclen, pw1, strlen(pw1)));
  695. tt_mem_op(buf2, ==, buf3, keylen);
  696. /* Derivekey with a longer output should fill the output. */
  697. memset(buf2, 0, sizeof(buf2));
  698. tt_int_op(S2K_OKAY, ==,
  699. secret_to_key_derivekey(buf2, sizeof(buf2), buf, speclen,
  700. pw1, strlen(pw1)));
  701. tt_mem_op(buf2, !=, buf3, sizeof(buf2));
  702. memset(buf3, 0, sizeof(buf3));
  703. tt_int_op(S2K_OKAY, ==,
  704. secret_to_key_derivekey(buf3, sizeof(buf3), buf, speclen,
  705. pw1, strlen(pw1)));
  706. tt_mem_op(buf2, ==, buf3, sizeof(buf3));
  707. tt_assert(!tor_mem_is_zero((char*)buf2+keylen, sizeof(buf2)-keylen));
  708. done:
  709. ;
  710. }
  711. static void
  712. test_crypto_s2k_general(void *arg)
  713. {
  714. const char *which = arg;
  715. if (!strcmp(which, "scrypt")) {
  716. run_s2k_tests(0, 2, 19, 32, 0);
  717. } else if (!strcmp(which, "scrypt-low")) {
  718. run_s2k_tests(S2K_FLAG_LOW_MEM, 2, 19, 32, 0);
  719. } else if (!strcmp(which, "pbkdf2")) {
  720. run_s2k_tests(S2K_FLAG_USE_PBKDF2, 1, 18, 20, 0);
  721. } else if (!strcmp(which, "rfc2440")) {
  722. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 0);
  723. } else if (!strcmp(which, "rfc2440-legacy")) {
  724. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 1);
  725. } else {
  726. tt_fail();
  727. }
  728. }
  729. static void
  730. test_crypto_s2k_errors(void *arg)
  731. {
  732. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN];
  733. size_t sz;
  734. (void)arg;
  735. /* Bogus specifiers: simple */
  736. tt_int_op(S2K_BAD_LEN, ==,
  737. secret_to_key_derivekey(buf, sizeof(buf),
  738. (const uint8_t*)"", 0, "ABC", 3));
  739. tt_int_op(S2K_BAD_ALGORITHM, ==,
  740. secret_to_key_derivekey(buf, sizeof(buf),
  741. (const uint8_t*)"\x10", 1, "ABC", 3));
  742. tt_int_op(S2K_BAD_LEN, ==,
  743. secret_to_key_derivekey(buf, sizeof(buf),
  744. (const uint8_t*)"\x01\x02", 2, "ABC", 3));
  745. tt_int_op(S2K_BAD_LEN, ==,
  746. secret_to_key_check((const uint8_t*)"", 0, "ABC", 3));
  747. tt_int_op(S2K_BAD_ALGORITHM, ==,
  748. secret_to_key_check((const uint8_t*)"\x10", 1, "ABC", 3));
  749. tt_int_op(S2K_BAD_LEN, ==,
  750. secret_to_key_check((const uint8_t*)"\x01\x02", 2, "ABC", 3));
  751. /* too long gets "BAD_LEN" too */
  752. memset(buf, 0, sizeof(buf));
  753. buf[0] = 2;
  754. tt_int_op(S2K_BAD_LEN, ==,
  755. secret_to_key_derivekey(buf2, sizeof(buf2),
  756. buf, sizeof(buf), "ABC", 3));
  757. /* Truncated output */
  758. #ifdef HAVE_LIBSCRYPT_H
  759. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  760. "ABC", 3, 0));
  761. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  762. "ABC", 3, S2K_FLAG_LOW_MEM));
  763. #endif
  764. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 37, &sz,
  765. "ABC", 3, S2K_FLAG_USE_PBKDF2));
  766. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 29, &sz,
  767. "ABC", 3, S2K_FLAG_NO_SCRYPT));
  768. #ifdef HAVE_LIBSCRYPT_H
  769. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18, 0));
  770. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18,
  771. S2K_FLAG_LOW_MEM));
  772. #endif
  773. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 17,
  774. S2K_FLAG_USE_PBKDF2));
  775. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 9,
  776. S2K_FLAG_NO_SCRYPT));
  777. /* Now try using type-specific bogus specifiers. */
  778. /* It's a bad pbkdf2 buffer if it has an iteration count that would overflow
  779. * int32_t. */
  780. memset(buf, 0, sizeof(buf));
  781. buf[0] = 1; /* pbkdf2 */
  782. buf[17] = 100; /* 1<<100 is much bigger than INT32_MAX */
  783. tt_int_op(S2K_BAD_PARAMS, ==,
  784. secret_to_key_derivekey(buf2, sizeof(buf2),
  785. buf, 18, "ABC", 3));
  786. #ifdef HAVE_LIBSCRYPT_H
  787. /* It's a bad scrypt buffer if N would overflow uint64 */
  788. memset(buf, 0, sizeof(buf));
  789. buf[0] = 2; /* scrypt */
  790. buf[17] = 100; /* 1<<100 is much bigger than UINT64_MAX */
  791. tt_int_op(S2K_BAD_PARAMS, ==,
  792. secret_to_key_derivekey(buf2, sizeof(buf2),
  793. buf, 19, "ABC", 3));
  794. #endif
  795. done:
  796. ;
  797. }
  798. static void
  799. test_crypto_scrypt_vectors(void *arg)
  800. {
  801. char *mem_op_hex_tmp = NULL;
  802. uint8_t spec[64], out[64];
  803. (void)arg;
  804. #ifndef HAVE_LIBSCRYPT_H
  805. if (1)
  806. tt_skip();
  807. #endif
  808. /* Test vectors from
  809. http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00 section 11.
  810. Note that the names of 'r' and 'N' are switched in that section. Or
  811. possibly in libscrypt.
  812. */
  813. base16_decode((char*)spec, sizeof(spec),
  814. "0400", 4);
  815. memset(out, 0x00, sizeof(out));
  816. tt_int_op(64, ==,
  817. secret_to_key_compute_key(out, 64, spec, 2, "", 0, 2));
  818. test_memeq_hex(out,
  819. "77d6576238657b203b19ca42c18a0497"
  820. "f16b4844e3074ae8dfdffa3fede21442"
  821. "fcd0069ded0948f8326a753a0fc81f17"
  822. "e8d3e0fb2e0d3628cf35e20c38d18906");
  823. base16_decode((char*)spec, sizeof(spec),
  824. "4e61436c" "0A34", 12);
  825. memset(out, 0x00, sizeof(out));
  826. tt_int_op(64, ==,
  827. secret_to_key_compute_key(out, 64, spec, 6, "password", 8, 2));
  828. test_memeq_hex(out,
  829. "fdbabe1c9d3472007856e7190d01e9fe"
  830. "7c6ad7cbc8237830e77376634b373162"
  831. "2eaf30d92e22a3886ff109279d9830da"
  832. "c727afb94a83ee6d8360cbdfa2cc0640");
  833. base16_decode((char*)spec, sizeof(spec),
  834. "536f6469756d43686c6f72696465" "0e30", 32);
  835. memset(out, 0x00, sizeof(out));
  836. tt_int_op(64, ==,
  837. secret_to_key_compute_key(out, 64, spec, 16,
  838. "pleaseletmein", 13, 2));
  839. test_memeq_hex(out,
  840. "7023bdcb3afd7348461c06cd81fd38eb"
  841. "fda8fbba904f8e3ea9b543f6545da1f2"
  842. "d5432955613f0fcf62d49705242a9af9"
  843. "e61e85dc0d651e40dfcf017b45575887");
  844. base16_decode((char*)spec, sizeof(spec),
  845. "536f6469756d43686c6f72696465" "1430", 32);
  846. memset(out, 0x00, sizeof(out));
  847. tt_int_op(64, ==,
  848. secret_to_key_compute_key(out, 64, spec, 16,
  849. "pleaseletmein", 13, 2));
  850. test_memeq_hex(out,
  851. "2101cb9b6a511aaeaddbbe09cf70f881"
  852. "ec568d574a2ffd4dabe5ee9820adaa47"
  853. "8e56fd8f4ba5d09ffa1c6d927c40f4c3"
  854. "37304049e8a952fbcbf45c6fa77a41a4");
  855. done:
  856. tor_free(mem_op_hex_tmp);
  857. }
  858. static void
  859. test_crypto_pbkdf2_vectors(void *arg)
  860. {
  861. char *mem_op_hex_tmp = NULL;
  862. uint8_t spec[64], out[64];
  863. (void)arg;
  864. /* Test vectors from RFC6070, section 2 */
  865. base16_decode((char*)spec, sizeof(spec),
  866. "73616c74" "00" , 10);
  867. memset(out, 0x00, sizeof(out));
  868. tt_int_op(20, ==,
  869. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  870. test_memeq_hex(out, "0c60c80f961f0e71f3a9b524af6012062fe037a6");
  871. base16_decode((char*)spec, sizeof(spec),
  872. "73616c74" "01" , 10);
  873. memset(out, 0x00, sizeof(out));
  874. tt_int_op(20, ==,
  875. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  876. test_memeq_hex(out, "ea6c014dc72d6f8ccd1ed92ace1d41f0d8de8957");
  877. base16_decode((char*)spec, sizeof(spec),
  878. "73616c74" "0C" , 10);
  879. memset(out, 0x00, sizeof(out));
  880. tt_int_op(20, ==,
  881. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  882. test_memeq_hex(out, "4b007901b765489abead49d926f721d065a429c1");
  883. base16_decode((char*)spec, sizeof(spec),
  884. "73616c74" "18" , 10);
  885. memset(out, 0x00, sizeof(out));
  886. tt_int_op(20, ==,
  887. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  888. test_memeq_hex(out, "eefe3d61cd4da4e4e9945b3d6ba2158c2634e984");
  889. base16_decode((char*)spec, sizeof(spec),
  890. "73616c7453414c5473616c7453414c5473616c745"
  891. "3414c5473616c7453414c5473616c74" "0C" , 74);
  892. memset(out, 0x00, sizeof(out));
  893. tt_int_op(25, ==,
  894. secret_to_key_compute_key(out, 25, spec, 37,
  895. "passwordPASSWORDpassword", 24, 1));
  896. test_memeq_hex(out, "3d2eec4fe41c849b80c8d83662c0e44a8b291a964cf2f07038");
  897. base16_decode((char*)spec, sizeof(spec),
  898. "7361006c74" "0c" , 12);
  899. memset(out, 0x00, sizeof(out));
  900. tt_int_op(16, ==,
  901. secret_to_key_compute_key(out, 16, spec, 6, "pass\0word", 9, 1));
  902. test_memeq_hex(out, "56fa6aa75548099dcc37d7f03425e0c3");
  903. done:
  904. tor_free(mem_op_hex_tmp);
  905. }
  906. static void
  907. test_crypto_pwbox(void *arg)
  908. {
  909. uint8_t *boxed=NULL, *decoded=NULL;
  910. size_t len, dlen;
  911. unsigned i;
  912. const char msg[] = "This bunny reminds you that you still have a "
  913. "salamander in your sylladex. She is holding the bunny Dave got you. "
  914. "It’s sort of uncanny how similar they are, aside from the knitted "
  915. "enhancements. Seriously, what are the odds?? So weird.";
  916. const char pw[] = "I'm a night owl and a wise bird too";
  917. const unsigned flags[] = { 0,
  918. S2K_FLAG_NO_SCRYPT,
  919. S2K_FLAG_LOW_MEM,
  920. S2K_FLAG_NO_SCRYPT|S2K_FLAG_LOW_MEM,
  921. S2K_FLAG_USE_PBKDF2 };
  922. (void)arg;
  923. for (i = 0; i < ARRAY_LENGTH(flags); ++i) {
  924. tt_int_op(0, ==, crypto_pwbox(&boxed, &len, (const uint8_t*)msg, strlen(msg),
  925. pw, strlen(pw), flags[i]));
  926. tt_assert(boxed);
  927. tt_assert(len > 128+32);
  928. tt_int_op(0, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  929. pw, strlen(pw)));
  930. tt_assert(decoded);
  931. tt_uint_op(dlen, ==, strlen(msg));
  932. tt_mem_op(decoded, ==, msg, dlen);
  933. tor_free(decoded);
  934. tt_int_op(UNPWBOX_BAD_SECRET, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  935. pw, strlen(pw)-1));
  936. boxed[len-1] ^= 1;
  937. tt_int_op(UNPWBOX_BAD_SECRET, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  938. pw, strlen(pw)));
  939. boxed[0] = 255;
  940. tt_int_op(UNPWBOX_CORRUPTED, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  941. pw, strlen(pw)));
  942. tor_free(boxed);
  943. }
  944. done:
  945. tor_free(boxed);
  946. tor_free(decoded);
  947. }
  948. /** Test AES-CTR encryption and decryption with IV. */
  949. static void
  950. test_crypto_aes_iv(void *arg)
  951. {
  952. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  953. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  954. char key1[16], key2[16];
  955. ssize_t encrypted_size, decrypted_size;
  956. int use_evp = !strcmp(arg,"evp");
  957. evaluate_evp_for_aes(use_evp);
  958. plain = tor_malloc(4095);
  959. encrypted1 = tor_malloc(4095 + 1 + 16);
  960. encrypted2 = tor_malloc(4095 + 1 + 16);
  961. decrypted1 = tor_malloc(4095 + 1);
  962. decrypted2 = tor_malloc(4095 + 1);
  963. crypto_rand(plain, 4095);
  964. crypto_rand(key1, 16);
  965. crypto_rand(key2, 16);
  966. crypto_rand(plain_1, 1);
  967. crypto_rand(plain_15, 15);
  968. crypto_rand(plain_16, 16);
  969. crypto_rand(plain_17, 17);
  970. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  971. /* Encrypt and decrypt with the same key. */
  972. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  973. plain, 4095);
  974. tt_int_op(encrypted_size,==, 16 + 4095);
  975. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  976. * greater than 0, but its truth is not
  977. * obvious to all analysis tools. */
  978. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  979. encrypted1, encrypted_size);
  980. tt_int_op(decrypted_size,==, 4095);
  981. tt_assert(decrypted_size > 0);
  982. tt_mem_op(plain,==, decrypted1, 4095);
  983. /* Encrypt a second time (with a new random initialization vector). */
  984. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  985. plain, 4095);
  986. tt_int_op(encrypted_size,==, 16 + 4095);
  987. tt_assert(encrypted_size > 0);
  988. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  989. encrypted2, encrypted_size);
  990. tt_int_op(decrypted_size,==, 4095);
  991. tt_assert(decrypted_size > 0);
  992. tt_mem_op(plain,==, decrypted2, 4095);
  993. tt_mem_op(encrypted1,!=, encrypted2, encrypted_size);
  994. /* Decrypt with the wrong key. */
  995. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  996. encrypted1, encrypted_size);
  997. tt_int_op(decrypted_size,==, 4095);
  998. tt_mem_op(plain,!=, decrypted2, decrypted_size);
  999. /* Alter the initialization vector. */
  1000. encrypted1[0] += 42;
  1001. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1002. encrypted1, encrypted_size);
  1003. tt_int_op(decrypted_size,==, 4095);
  1004. tt_mem_op(plain,!=, decrypted2, 4095);
  1005. /* Special length case: 1. */
  1006. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  1007. plain_1, 1);
  1008. tt_int_op(encrypted_size,==, 16 + 1);
  1009. tt_assert(encrypted_size > 0);
  1010. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  1011. encrypted1, encrypted_size);
  1012. tt_int_op(decrypted_size,==, 1);
  1013. tt_assert(decrypted_size > 0);
  1014. tt_mem_op(plain_1,==, decrypted1, 1);
  1015. /* Special length case: 15. */
  1016. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1017. plain_15, 15);
  1018. tt_int_op(encrypted_size,==, 16 + 15);
  1019. tt_assert(encrypted_size > 0);
  1020. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1021. encrypted1, encrypted_size);
  1022. tt_int_op(decrypted_size,==, 15);
  1023. tt_assert(decrypted_size > 0);
  1024. tt_mem_op(plain_15,==, decrypted1, 15);
  1025. /* Special length case: 16. */
  1026. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1027. plain_16, 16);
  1028. tt_int_op(encrypted_size,==, 16 + 16);
  1029. tt_assert(encrypted_size > 0);
  1030. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1031. encrypted1, encrypted_size);
  1032. tt_int_op(decrypted_size,==, 16);
  1033. tt_assert(decrypted_size > 0);
  1034. tt_mem_op(plain_16,==, decrypted1, 16);
  1035. /* Special length case: 17. */
  1036. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1037. plain_17, 17);
  1038. tt_int_op(encrypted_size,==, 16 + 17);
  1039. tt_assert(encrypted_size > 0);
  1040. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1041. encrypted1, encrypted_size);
  1042. tt_int_op(decrypted_size,==, 17);
  1043. tt_assert(decrypted_size > 0);
  1044. tt_mem_op(plain_17,==, decrypted1, 17);
  1045. done:
  1046. /* Free memory. */
  1047. tor_free(plain);
  1048. tor_free(encrypted1);
  1049. tor_free(encrypted2);
  1050. tor_free(decrypted1);
  1051. tor_free(decrypted2);
  1052. }
  1053. /** Test base32 decoding. */
  1054. static void
  1055. test_crypto_base32_decode(void *arg)
  1056. {
  1057. char plain[60], encoded[96 + 1], decoded[60];
  1058. int res;
  1059. (void)arg;
  1060. crypto_rand(plain, 60);
  1061. /* Encode and decode a random string. */
  1062. base32_encode(encoded, 96 + 1, plain, 60);
  1063. res = base32_decode(decoded, 60, encoded, 96);
  1064. tt_int_op(res,==, 0);
  1065. tt_mem_op(plain,==, decoded, 60);
  1066. /* Encode, uppercase, and decode a random string. */
  1067. base32_encode(encoded, 96 + 1, plain, 60);
  1068. tor_strupper(encoded);
  1069. res = base32_decode(decoded, 60, encoded, 96);
  1070. tt_int_op(res,==, 0);
  1071. tt_mem_op(plain,==, decoded, 60);
  1072. /* Change encoded string and decode. */
  1073. if (encoded[0] == 'A' || encoded[0] == 'a')
  1074. encoded[0] = 'B';
  1075. else
  1076. encoded[0] = 'A';
  1077. res = base32_decode(decoded, 60, encoded, 96);
  1078. tt_int_op(res,==, 0);
  1079. tt_mem_op(plain,!=, decoded, 60);
  1080. /* Bad encodings. */
  1081. encoded[0] = '!';
  1082. res = base32_decode(decoded, 60, encoded, 96);
  1083. tt_int_op(0, >, res);
  1084. done:
  1085. ;
  1086. }
  1087. static void
  1088. test_crypto_kdf_TAP(void *arg)
  1089. {
  1090. uint8_t key_material[100];
  1091. int r;
  1092. char *mem_op_hex_tmp = NULL;
  1093. (void)arg;
  1094. #define EXPAND(s) \
  1095. r = crypto_expand_key_material_TAP( \
  1096. (const uint8_t*)(s), strlen(s), \
  1097. key_material, 100)
  1098. /* Test vectors generated with a little python script; feel free to write
  1099. * your own. */
  1100. memset(key_material, 0, sizeof(key_material));
  1101. EXPAND("");
  1102. tt_int_op(r, ==, 0);
  1103. test_memeq_hex(key_material,
  1104. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1105. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1106. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1107. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1108. EXPAND("Tor");
  1109. tt_int_op(r, ==, 0);
  1110. test_memeq_hex(key_material,
  1111. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1112. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1113. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1114. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1115. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1116. tt_int_op(r, ==, 0);
  1117. test_memeq_hex(key_material,
  1118. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1119. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1120. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1121. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1122. done:
  1123. tor_free(mem_op_hex_tmp);
  1124. #undef EXPAND
  1125. }
  1126. static void
  1127. test_crypto_hkdf_sha256(void *arg)
  1128. {
  1129. uint8_t key_material[100];
  1130. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1131. const size_t salt_len = strlen((char*)salt);
  1132. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1133. const size_t m_expand_len = strlen((char*)m_expand);
  1134. int r;
  1135. char *mem_op_hex_tmp = NULL;
  1136. (void)arg;
  1137. #define EXPAND(s) \
  1138. r = crypto_expand_key_material_rfc5869_sha256( \
  1139. (const uint8_t*)(s), strlen(s), \
  1140. salt, salt_len, \
  1141. m_expand, m_expand_len, \
  1142. key_material, 100)
  1143. /* Test vectors generated with ntor_ref.py */
  1144. memset(key_material, 0, sizeof(key_material));
  1145. EXPAND("");
  1146. tt_int_op(r, ==, 0);
  1147. test_memeq_hex(key_material,
  1148. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  1149. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  1150. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  1151. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  1152. EXPAND("Tor");
  1153. tt_int_op(r, ==, 0);
  1154. test_memeq_hex(key_material,
  1155. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1156. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1157. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1158. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1159. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1160. tt_int_op(r, ==, 0);
  1161. test_memeq_hex(key_material,
  1162. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1163. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1164. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1165. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1166. done:
  1167. tor_free(mem_op_hex_tmp);
  1168. #undef EXPAND
  1169. }
  1170. #ifdef CURVE25519_ENABLED
  1171. static void
  1172. test_crypto_curve25519_impl(void *arg)
  1173. {
  1174. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1175. version 20050915, by D. J. Bernstein, Public domain. */
  1176. const int randomize_high_bit = (arg != NULL);
  1177. #ifdef SLOW_CURVE25519_TEST
  1178. const int loop_max=10000;
  1179. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1180. "7e0329f4dd2819f5f32d130f1296b500";
  1181. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1182. "e0544770bc7de853b38f9100489e3e79";
  1183. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1184. "bd13861475516bc2cd2b6e005e805064";
  1185. #else
  1186. const int loop_max=200;
  1187. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1188. "c6a1037d74cceb3712e9206871dcf654";
  1189. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1190. "8e3ee1a63c7d14274ea5d4c67f065467";
  1191. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1192. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1193. #endif
  1194. unsigned char e1k[32];
  1195. unsigned char e2k[32];
  1196. unsigned char e1e2k[32];
  1197. unsigned char e2e1k[32];
  1198. unsigned char e1[32] = {3};
  1199. unsigned char e2[32] = {5};
  1200. unsigned char k[32] = {9};
  1201. int loop, i;
  1202. char *mem_op_hex_tmp = NULL;
  1203. for (loop = 0; loop < loop_max; ++loop) {
  1204. curve25519_impl(e1k,e1,k);
  1205. curve25519_impl(e2e1k,e2,e1k);
  1206. curve25519_impl(e2k,e2,k);
  1207. if (randomize_high_bit) {
  1208. /* We require that the high bit of the public key be ignored. So if
  1209. * we're doing this variant test, we randomize the high bit of e2k, and
  1210. * make sure that the handshake still works out the same as it would
  1211. * otherwise. */
  1212. uint8_t byte;
  1213. crypto_rand((char*)&byte, 1);
  1214. e2k[31] |= (byte & 0x80);
  1215. }
  1216. curve25519_impl(e1e2k,e1,e2k);
  1217. tt_mem_op(e1e2k,==, e2e1k, 32);
  1218. if (loop == loop_max-1) {
  1219. break;
  1220. }
  1221. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1222. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1223. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1224. }
  1225. test_memeq_hex(e1, e1_expected);
  1226. test_memeq_hex(e2k, e2k_expected);
  1227. test_memeq_hex(e1e2k, e1e2k_expected);
  1228. done:
  1229. tor_free(mem_op_hex_tmp);
  1230. }
  1231. static void
  1232. test_crypto_curve25519_wrappers(void *arg)
  1233. {
  1234. curve25519_public_key_t pubkey1, pubkey2;
  1235. curve25519_secret_key_t seckey1, seckey2;
  1236. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1237. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1238. (void)arg;
  1239. /* Test a simple handshake, serializing and deserializing some stuff. */
  1240. curve25519_secret_key_generate(&seckey1, 0);
  1241. curve25519_secret_key_generate(&seckey2, 1);
  1242. curve25519_public_key_generate(&pubkey1, &seckey1);
  1243. curve25519_public_key_generate(&pubkey2, &seckey2);
  1244. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1245. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1246. curve25519_handshake(output1, &seckey1, &pubkey2);
  1247. curve25519_handshake(output2, &seckey2, &pubkey1);
  1248. tt_mem_op(output1,==, output2, sizeof(output1));
  1249. done:
  1250. ;
  1251. }
  1252. static void
  1253. test_crypto_curve25519_encode(void *arg)
  1254. {
  1255. curve25519_secret_key_t seckey;
  1256. curve25519_public_key_t key1, key2, key3;
  1257. char buf[64];
  1258. (void)arg;
  1259. curve25519_secret_key_generate(&seckey, 0);
  1260. curve25519_public_key_generate(&key1, &seckey);
  1261. tt_int_op(0, ==, curve25519_public_to_base64(buf, &key1));
  1262. tt_int_op(CURVE25519_BASE64_PADDED_LEN, ==, strlen(buf));
  1263. tt_int_op(0, ==, curve25519_public_from_base64(&key2, buf));
  1264. tt_mem_op(key1.public_key,==, key2.public_key, CURVE25519_PUBKEY_LEN);
  1265. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1266. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, ==, strlen(buf));
  1267. tt_int_op(0, ==, curve25519_public_from_base64(&key3, buf));
  1268. tt_mem_op(key1.public_key,==, key3.public_key, CURVE25519_PUBKEY_LEN);
  1269. /* Now try bogus parses. */
  1270. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1271. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1272. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1273. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1274. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1275. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1276. done:
  1277. ;
  1278. }
  1279. static void
  1280. test_crypto_curve25519_persist(void *arg)
  1281. {
  1282. curve25519_keypair_t keypair, keypair2;
  1283. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1284. char *tag = NULL;
  1285. char *content = NULL;
  1286. const char *cp;
  1287. struct stat st;
  1288. size_t taglen;
  1289. (void)arg;
  1290. tt_int_op(0,==,curve25519_keypair_generate(&keypair, 0));
  1291. tt_int_op(0,==,curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1292. tt_int_op(0,==,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1293. tt_str_op(tag,==,"testing");
  1294. tor_free(tag);
  1295. tt_mem_op(keypair.pubkey.public_key,==,
  1296. keypair2.pubkey.public_key,
  1297. CURVE25519_PUBKEY_LEN);
  1298. tt_mem_op(keypair.seckey.secret_key,==,
  1299. keypair2.seckey.secret_key,
  1300. CURVE25519_SECKEY_LEN);
  1301. content = read_file_to_str(fname, RFTS_BIN, &st);
  1302. tt_assert(content);
  1303. taglen = strlen("== c25519v1: testing ==");
  1304. tt_u64_op((uint64_t)st.st_size, ==,
  1305. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1306. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1307. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1308. cp = content + 32;
  1309. tt_mem_op(keypair.seckey.secret_key,==,
  1310. cp,
  1311. CURVE25519_SECKEY_LEN);
  1312. cp += CURVE25519_SECKEY_LEN;
  1313. tt_mem_op(keypair.pubkey.public_key,==,
  1314. cp,
  1315. CURVE25519_SECKEY_LEN);
  1316. tor_free(fname);
  1317. fname = tor_strdup(get_fname("bogus_keypair"));
  1318. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1319. tor_free(tag);
  1320. content[69] ^= 0xff;
  1321. tt_int_op(0, ==, write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1322. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1323. done:
  1324. tor_free(fname);
  1325. tor_free(content);
  1326. tor_free(tag);
  1327. }
  1328. static void
  1329. test_crypto_ed25519_simple(void *arg)
  1330. {
  1331. ed25519_keypair_t kp1, kp2;
  1332. ed25519_public_key_t pub1, pub2;
  1333. ed25519_secret_key_t sec1, sec2;
  1334. ed25519_signature_t sig1, sig2;
  1335. const uint8_t msg[] =
  1336. "GNU will be able to run Unix programs, "
  1337. "but will not be identical to Unix.";
  1338. const uint8_t msg2[] =
  1339. "Microsoft Windows extends the features of the DOS operating system, "
  1340. "yet is compatible with most existing applications that run under DOS.";
  1341. size_t msg_len = strlen((const char*)msg);
  1342. size_t msg2_len = strlen((const char*)msg2);
  1343. (void)arg;
  1344. tt_int_op(0, ==, ed25519_secret_key_generate(&sec1, 0));
  1345. tt_int_op(0, ==, ed25519_secret_key_generate(&sec2, 1));
  1346. tt_int_op(0, ==, ed25519_public_key_generate(&pub1, &sec1));
  1347. tt_int_op(0, ==, ed25519_public_key_generate(&pub2, &sec1));
  1348. tt_mem_op(pub1.pubkey, ==, pub2.pubkey, sizeof(pub1.pubkey));
  1349. memcpy(&kp1.pubkey, &pub1, sizeof(pub1));
  1350. memcpy(&kp1.seckey, &sec1, sizeof(sec1));
  1351. tt_int_op(0, ==, ed25519_sign(&sig1, msg, msg_len, &kp1));
  1352. tt_int_op(0, ==, ed25519_sign(&sig2, msg, msg_len, &kp1));
  1353. /* Ed25519 signatures are deterministic */
  1354. tt_mem_op(sig1.sig, ==, sig2.sig, sizeof(sig1.sig));
  1355. /* Basic signature is valid. */
  1356. tt_int_op(0, ==, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1357. /* Altered signature doesn't work. */
  1358. sig1.sig[0] ^= 3;
  1359. tt_int_op(-1, ==, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1360. /* Wrong public key doesn't work. */
  1361. tt_int_op(0, ==, ed25519_public_key_generate(&pub2, &sec2));
  1362. tt_int_op(-1, ==, ed25519_checksig(&sig2, msg, msg_len, &pub2));
  1363. /* Wrong message doesn't work. */
  1364. tt_int_op(0, ==, ed25519_checksig(&sig2, msg, msg_len, &pub1));
  1365. tt_int_op(-1, ==, ed25519_checksig(&sig2, msg, msg_len-1, &pub1));
  1366. tt_int_op(-1, ==, ed25519_checksig(&sig2, msg2, msg2_len, &pub1));
  1367. /* Batch signature checking works with some bad. */
  1368. tt_int_op(0, ==, ed25519_keypair_generate(&kp2, 0));
  1369. tt_int_op(0, ==, ed25519_sign(&sig1, msg, msg_len, &kp2));
  1370. {
  1371. ed25519_checkable_t ch[] = {
  1372. { &pub1, sig2, msg, msg_len }, /*ok*/
  1373. { &pub1, sig2, msg, msg_len-1 }, /*bad*/
  1374. { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/
  1375. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1376. };
  1377. int okay[4];
  1378. tt_int_op(-2, ==, ed25519_checksig_batch(okay, ch, 4));
  1379. tt_int_op(okay[0], ==, 1);
  1380. tt_int_op(okay[1], ==, 0);
  1381. tt_int_op(okay[2], ==, 0);
  1382. tt_int_op(okay[3], ==, 1);
  1383. tt_int_op(-2, ==, ed25519_checksig_batch(NULL, ch, 4));
  1384. }
  1385. /* Batch signature checking works with all good. */
  1386. {
  1387. ed25519_checkable_t ch[] = {
  1388. { &pub1, sig2, msg, msg_len }, /*ok*/
  1389. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1390. };
  1391. int okay[2];
  1392. tt_int_op(0, ==, ed25519_checksig_batch(okay, ch, 2));
  1393. tt_int_op(okay[0], ==, 1);
  1394. tt_int_op(okay[1], ==, 1);
  1395. tt_int_op(0, ==, ed25519_checksig_batch(NULL, ch, 2));
  1396. }
  1397. done:
  1398. ;
  1399. }
  1400. static void
  1401. test_crypto_ed25519_test_vectors(void *arg)
  1402. {
  1403. char *mem_op_hex_tmp=NULL;
  1404. int i;
  1405. struct {
  1406. const char *sk;
  1407. const char *pk;
  1408. const char *sig;
  1409. const char *msg;
  1410. } items[] = {
  1411. /* These test vectors were generated with the "ref" implementation of
  1412. * ed25519 from SUPERCOP-20130419 */
  1413. { "4c6574277320686f706520746865726520617265206e6f206275677320696e20",
  1414. "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87",
  1415. "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51"
  1416. "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06",
  1417. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1418. "204e554c2d7465726d696e617465642e"
  1419. },
  1420. { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74",
  1421. "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac",
  1422. "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28"
  1423. "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601",
  1424. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1425. "204e554c2d7465726d696e617465642e"
  1426. },
  1427. { "6578706f73656420627920456e676c697368207465787420617320696e707574",
  1428. "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706",
  1429. "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad"
  1430. "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209",
  1431. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1432. "204e554c2d7465726d696e617465642e"
  1433. },
  1434. /* These come from "sign.input" in ed25519's page */
  1435. { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9",
  1436. "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257",
  1437. "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258"
  1438. "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e",
  1439. "5a8d9d0a22357e6655f9c785"
  1440. },
  1441. { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800",
  1442. "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd",
  1443. "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d"
  1444. "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c",
  1445. "b87d3813e03f58cf19fd0b6395"
  1446. },
  1447. { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738",
  1448. "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291",
  1449. "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0"
  1450. "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06",
  1451. "55c7fa434f5ed8cdec2b7aeac173",
  1452. },
  1453. { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300",
  1454. "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5",
  1455. "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395"
  1456. "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00",
  1457. "0a688e79be24f866286d4646b5d81c"
  1458. },
  1459. { NULL, NULL, NULL, NULL}
  1460. };
  1461. (void)arg;
  1462. for (i = 0; items[i].pk; ++i) {
  1463. ed25519_keypair_t kp;
  1464. ed25519_signature_t sig;
  1465. uint8_t sk_seed[32];
  1466. uint8_t *msg;
  1467. size_t msg_len;
  1468. base16_decode((char*)sk_seed, sizeof(sk_seed),
  1469. items[i].sk, 64);
  1470. ed25519_secret_key_from_seed(&kp.seckey, sk_seed);
  1471. tt_int_op(0, ==, ed25519_public_key_generate(&kp.pubkey, &kp.seckey));
  1472. test_memeq_hex(kp.pubkey.pubkey, items[i].pk);
  1473. msg_len = strlen(items[i].msg) / 2;
  1474. msg = tor_malloc(msg_len);
  1475. base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg));
  1476. tt_int_op(0, ==, ed25519_sign(&sig, msg, msg_len, &kp));
  1477. test_memeq_hex(sig.sig, items[i].sig);
  1478. tor_free(msg);
  1479. }
  1480. done:
  1481. tor_free(mem_op_hex_tmp);
  1482. }
  1483. static void
  1484. test_crypto_ed25519_encode(void *arg)
  1485. {
  1486. char buf[ED25519_BASE64_LEN+1];
  1487. ed25519_keypair_t kp;
  1488. ed25519_public_key_t pk;
  1489. char *mem_op_hex_tmp = NULL;
  1490. (void) arg;
  1491. /* Test roundtrip. */
  1492. tt_int_op(0, ==, ed25519_keypair_generate(&kp, 0));
  1493. tt_int_op(0, ==, ed25519_public_to_base64(buf, &kp.pubkey));
  1494. tt_int_op(ED25519_BASE64_LEN, ==, strlen(buf));
  1495. tt_int_op(0, ==, ed25519_public_from_base64(&pk, buf));
  1496. tt_mem_op(kp.pubkey.pubkey, ==, pk.pubkey, ED25519_PUBKEY_LEN);
  1497. /* Test known value. */
  1498. tt_int_op(0, ==, ed25519_public_from_base64(&pk,
  1499. "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM"));
  1500. test_memeq_hex(pk.pubkey,
  1501. "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3");
  1502. done:
  1503. tor_free(mem_op_hex_tmp);
  1504. }
  1505. static void
  1506. test_crypto_ed25519_convert(void *arg)
  1507. {
  1508. const uint8_t msg[] =
  1509. "The eyes are not here / There are no eyes here.";
  1510. const int N = 30;
  1511. int i;
  1512. (void)arg;
  1513. for (i = 0; i < N; ++i) {
  1514. curve25519_keypair_t curve25519_keypair;
  1515. ed25519_keypair_t ed25519_keypair;
  1516. ed25519_public_key_t ed25519_pubkey;
  1517. int bit=0;
  1518. ed25519_signature_t sig;
  1519. tt_int_op(0,==,curve25519_keypair_generate(&curve25519_keypair, i&1));
  1520. tt_int_op(0,==,ed25519_keypair_from_curve25519_keypair(
  1521. &ed25519_keypair, &bit, &curve25519_keypair));
  1522. tt_int_op(0,==,ed25519_public_key_from_curve25519_public_key(
  1523. &ed25519_pubkey, &curve25519_keypair.pubkey, bit));
  1524. tt_mem_op(ed25519_pubkey.pubkey, ==, ed25519_keypair.pubkey.pubkey, 32);
  1525. tt_int_op(0,==,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair));
  1526. tt_int_op(0,==,ed25519_checksig(&sig, msg, sizeof(msg),
  1527. &ed25519_pubkey));
  1528. tt_int_op(-1,==,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  1529. &ed25519_pubkey));
  1530. sig.sig[0] ^= 15;
  1531. tt_int_op(-1,==,ed25519_checksig(&sig, msg, sizeof(msg),
  1532. &ed25519_pubkey));
  1533. }
  1534. done:
  1535. ;
  1536. }
  1537. static void
  1538. test_crypto_ed25519_blinding(void *arg)
  1539. {
  1540. const uint8_t msg[] =
  1541. "Eyes I dare not meet in dreams / In death's dream kingdom";
  1542. const int N = 30;
  1543. int i;
  1544. (void)arg;
  1545. for (i = 0; i < N; ++i) {
  1546. uint8_t blinding[32];
  1547. ed25519_keypair_t ed25519_keypair;
  1548. ed25519_keypair_t ed25519_keypair_blinded;
  1549. ed25519_public_key_t ed25519_pubkey_blinded;
  1550. ed25519_signature_t sig;
  1551. crypto_rand((char*) blinding, sizeof(blinding));
  1552. tt_int_op(0,==,ed25519_keypair_generate(&ed25519_keypair, 0));
  1553. tt_int_op(0,==,ed25519_keypair_blind(&ed25519_keypair_blinded,
  1554. &ed25519_keypair, blinding));
  1555. tt_int_op(0,==,ed25519_public_blind(&ed25519_pubkey_blinded,
  1556. &ed25519_keypair.pubkey, blinding));
  1557. tt_mem_op(ed25519_pubkey_blinded.pubkey, ==,
  1558. ed25519_keypair_blinded.pubkey.pubkey, 32);
  1559. tt_int_op(0,==,ed25519_sign(&sig, msg, sizeof(msg),
  1560. &ed25519_keypair_blinded));
  1561. tt_int_op(0,==,ed25519_checksig(&sig, msg, sizeof(msg),
  1562. &ed25519_pubkey_blinded));
  1563. tt_int_op(-1,==,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  1564. &ed25519_pubkey_blinded));
  1565. sig.sig[0] ^= 15;
  1566. tt_int_op(-1,==,ed25519_checksig(&sig, msg, sizeof(msg),
  1567. &ed25519_pubkey_blinded));
  1568. }
  1569. done:
  1570. ;
  1571. }
  1572. static void
  1573. test_crypto_ed25519_testvectors(void *arg)
  1574. {
  1575. unsigned i;
  1576. char *mem_op_hex_tmp = NULL;
  1577. (void)arg;
  1578. for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) {
  1579. uint8_t sk[32];
  1580. ed25519_secret_key_t esk;
  1581. ed25519_public_key_t pk, blind_pk, pkfromcurve;
  1582. ed25519_keypair_t keypair, blind_keypair;
  1583. curve25519_keypair_t curvekp;
  1584. uint8_t blinding_param[32];
  1585. ed25519_signature_t sig;
  1586. int sign;
  1587. #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s))
  1588. #define EQ(a,h) test_memeq_hex((const char*)(a), (h))
  1589. tt_int_op(0, ==, DECODE(sk, ED25519_SECRET_KEYS[i]));
  1590. tt_int_op(0, ==, DECODE(blinding_param, ED25519_BLINDING_PARAMS[i]));
  1591. tt_int_op(0, ==, ed25519_secret_key_from_seed(&esk, sk));
  1592. EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]);
  1593. tt_int_op(0, ==, ed25519_public_key_generate(&pk, &esk));
  1594. EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]);
  1595. memcpy(&curvekp.seckey.secret_key, esk.seckey, 32);
  1596. curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey);
  1597. tt_int_op(0, ==,
  1598. ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp));
  1599. tt_int_op(0, ==, ed25519_public_key_from_curve25519_public_key(
  1600. &pkfromcurve, &curvekp.pubkey, sign));
  1601. tt_mem_op(keypair.pubkey.pubkey, ==, pkfromcurve.pubkey, 32);
  1602. EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]);
  1603. /* Self-signing */
  1604. memcpy(&keypair.seckey, &esk, sizeof(esk));
  1605. memcpy(&keypair.pubkey, &pk, sizeof(pk));
  1606. tt_int_op(0, ==, ed25519_sign(&sig, pk.pubkey, 32, &keypair));
  1607. EQ(sig.sig, ED25519_SELF_SIGNATURES[i]);
  1608. /* Blinding */
  1609. tt_int_op(0, ==,
  1610. ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param));
  1611. tt_int_op(0, ==,
  1612. ed25519_public_blind(&blind_pk, &pk, blinding_param));
  1613. EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]);
  1614. EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]);
  1615. tt_mem_op(blind_pk.pubkey, ==, blind_keypair.pubkey.pubkey, 32);
  1616. #undef DECODE
  1617. #undef EQ
  1618. }
  1619. done:
  1620. tor_free(mem_op_hex_tmp);
  1621. }
  1622. #endif /* CURVE25519_ENABLED */
  1623. static void
  1624. test_crypto_siphash(void *arg)
  1625. {
  1626. /* From the reference implementation, taking
  1627. k = 00 01 02 ... 0f
  1628. and in = 00; 00 01; 00 01 02; ...
  1629. */
  1630. const uint8_t VECTORS[64][8] =
  1631. {
  1632. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  1633. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  1634. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  1635. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  1636. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  1637. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  1638. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  1639. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  1640. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  1641. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  1642. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  1643. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  1644. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  1645. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  1646. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  1647. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  1648. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  1649. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  1650. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  1651. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  1652. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  1653. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  1654. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  1655. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  1656. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  1657. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  1658. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  1659. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  1660. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  1661. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  1662. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  1663. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  1664. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  1665. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  1666. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  1667. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  1668. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  1669. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  1670. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  1671. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  1672. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  1673. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  1674. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  1675. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  1676. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  1677. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  1678. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  1679. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  1680. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  1681. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  1682. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  1683. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  1684. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  1685. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  1686. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  1687. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  1688. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  1689. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  1690. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  1691. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  1692. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  1693. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  1694. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  1695. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  1696. };
  1697. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  1698. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  1699. uint8_t input[64];
  1700. int i, j;
  1701. (void)arg;
  1702. for (i = 0; i < 64; ++i)
  1703. input[i] = i;
  1704. for (i = 0; i < 64; ++i) {
  1705. uint64_t r = siphash24(input, i, &K);
  1706. for (j = 0; j < 8; ++j) {
  1707. tt_int_op( (r >> (j*8)) & 0xff, ==, VECTORS[i][j]);
  1708. }
  1709. }
  1710. done:
  1711. ;
  1712. }
  1713. static void *
  1714. pass_data_setup_fn(const struct testcase_t *testcase)
  1715. {
  1716. return testcase->setup_data;
  1717. }
  1718. static int
  1719. pass_data_cleanup_fn(const struct testcase_t *testcase, void *ptr)
  1720. {
  1721. (void)ptr;
  1722. (void)testcase;
  1723. return 1;
  1724. }
  1725. static const struct testcase_setup_t pass_data = {
  1726. pass_data_setup_fn, pass_data_cleanup_fn
  1727. };
  1728. #define CRYPTO_LEGACY(name) \
  1729. { #name, test_crypto_ ## name , 0, NULL, NULL }
  1730. struct testcase_t crypto_tests[] = {
  1731. CRYPTO_LEGACY(formats),
  1732. CRYPTO_LEGACY(rng),
  1733. { "aes_AES", test_crypto_aes, TT_FORK, &pass_data, (void*)"aes" },
  1734. { "aes_EVP", test_crypto_aes, TT_FORK, &pass_data, (void*)"evp" },
  1735. CRYPTO_LEGACY(sha),
  1736. CRYPTO_LEGACY(pk),
  1737. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  1738. CRYPTO_LEGACY(digests),
  1739. CRYPTO_LEGACY(dh),
  1740. CRYPTO_LEGACY(s2k_rfc2440),
  1741. #ifdef HAVE_LIBSCRYPT_H
  1742. { "s2k_scrypt", test_crypto_s2k_general, 0, &pass_data,
  1743. (void*)"scrypt" },
  1744. { "s2k_scrypt_low", test_crypto_s2k_general, 0, &pass_data,
  1745. (void*)"scrypt-low" },
  1746. #endif
  1747. { "s2k_pbkdf2", test_crypto_s2k_general, 0, &pass_data,
  1748. (void*)"pbkdf2" },
  1749. { "s2k_rfc2440_general", test_crypto_s2k_general, 0, &pass_data,
  1750. (void*)"rfc2440" },
  1751. { "s2k_rfc2440_legacy", test_crypto_s2k_general, 0, &pass_data,
  1752. (void*)"rfc2440-legacy" },
  1753. { "s2k_errors", test_crypto_s2k_errors, 0, NULL, NULL },
  1754. { "scrypt_vectors", test_crypto_scrypt_vectors, 0, NULL, NULL },
  1755. { "pbkdf2_vectors", test_crypto_pbkdf2_vectors, 0, NULL, NULL },
  1756. { "pwbox", test_crypto_pwbox, 0, NULL, NULL },
  1757. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"aes" },
  1758. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"evp" },
  1759. CRYPTO_LEGACY(base32_decode),
  1760. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  1761. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  1762. #ifdef CURVE25519_ENABLED
  1763. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  1764. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  1765. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  1766. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  1767. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  1768. { "ed25519_simple", test_crypto_ed25519_simple, 0, NULL, NULL },
  1769. { "ed25519_test_vectors", test_crypto_ed25519_test_vectors, 0, NULL, NULL },
  1770. { "ed25519_encode", test_crypto_ed25519_encode, 0, NULL, NULL },
  1771. { "ed25519_convert", test_crypto_ed25519_convert, 0, NULL, NULL },
  1772. { "ed25519_blinding", test_crypto_ed25519_blinding, 0, NULL, NULL },
  1773. { "ed25519_testvectors", test_crypto_ed25519_testvectors, 0, NULL, NULL },
  1774. #endif
  1775. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  1776. END_OF_TESTCASES
  1777. };