Browse Source

BST insertion in AVL style

sshsshy 2 years ago
parent
commit
bc6a5846e1
1 changed files with 244 additions and 395 deletions
  1. 244 395
      bst.cpp

+ 244 - 395
bst.cpp

@@ -1,479 +1,328 @@
 #include <functional>
 
-#include "bst.hpp"
+#include "types.hpp"
+#include "duoram.hpp"
+#include "node.hpp"
 
 // This file demonstrates how to implement custom ORAM wide cell types.
 // Such types can be structures of arbitrary numbers of RegAS and RegXS
-// fields.  The example here imagines a node of a binary search tree,
+// fields.  The example here imagines a cell of a binary search tree,
 // where you would want the key to be additively shared (so that you can
 // easily do comparisons), the pointers field to be XOR shared (so that
 // you can easily do bit operations to pack two pointers and maybe some
 // tree balancing information into one field) and the value doesn't
 // really matter, but XOR shared is usually slightly more efficient.
 
-std::tuple<RegBS, RegBS> compare_keys(MPCTIO tio, yield_t &yield, Node n1, Node n2) {
-    CDPF cdpf = tio.cdpf(yield);
-    auto [lt, eq, gt] = cdpf.compare(tio, yield, n2.key - n1.key, tio.aes_ops());
-    RegBS lteq = lt^eq;
-    return {lteq, gt};
-}
+struct Node {
+    RegAS key;
+    RegXS pointers;
+    RegXS value;
 
-// Assuming pointer of 64 bits is split as:
-// - 32 bits Left ptr
-// - 32 bits Right ptr
-// < Left, Right>
+// Field-access macros so we can write A[i].NODE_KEY instead of
+// A[i].field(&Node::key)
 
-inline RegXS extractLeftPtr(RegXS pointer){ 
-    return ((pointer&(0xFFFFFFFF00000000))>>32); 
-}
+#define NODE_KEY field(&Node::key)
+#define NODE_POINTERS field(&Node::pointers)
+#define NODE_VALUE field(&Node::value)
 
-inline RegXS extractRightPtr(RegXS pointer){
-    return (pointer&(0x00000000FFFFFFFF)); 
-}
+    // For debugging and checking answers
+    void dump() const {
+        printf("[%016lx %016lx %016lx]", key.share(), pointers.share(),
+            value.share());
+    }
 
-inline void setLeftPtr(RegXS &pointer, RegXS new_ptr){ 
-    pointer&=(0x00000000FFFFFFFF);
-    pointer+=(new_ptr<<32);
-}
+    // You'll need to be able to create a random element, and do the
+    // operations +=, +, -=, - (binary and unary).  Note that for
+    // XOR-shared fields, + and - are both really XOR.
 
-inline void setRightPtr(RegXS &pointer, RegXS new_ptr){
-    pointer&=(0xFFFFFFFF00000000);
-    pointer+=(new_ptr);
-}
 
-// Pretty-print a reconstructed BST, rooted at node. is_left_child and
-// is_right_child indicate whether node is a left or right child of its
-// parent.  They cannot both be true, but the root of the tree has both
-// of them false.
-void BST::pretty_print(const std::vector<Node> &R, value_t node,
-    const std::string &prefix = "", bool is_left_child = false,
-    bool is_right_child = false)
-{
-    if (node == 0) {
-        // NULL pointer
-        if (is_left_child) {
-            printf("%s\xE2\x95\xA7\n", prefix.c_str()); // ╧
-        } else if (is_right_child) {
-            printf("%s\xE2\x95\xA4\n", prefix.c_str()); // ╤
-        } else {
-            printf("%s\xE2\x95\xA2\n", prefix.c_str()); // ╢
-        }
-        return;
+    inline void zeronode() {
+        key.set(0);
+        pointers.set(0);
+        value.set(0);
     }
-    const Node &n = R[node];
-    value_t left_ptr = extractLeftPtr(n.pointers).xshare;
-    value_t right_ptr = extractRightPtr(n.pointers).xshare;
-    std::string rightprefix(prefix), leftprefix(prefix),
-        nodeprefix(prefix);
-    if (is_left_child) {
-        rightprefix.append("\xE2\x94\x82"); // │
-        leftprefix.append(" ");
-        nodeprefix.append("\xE2\x94\x94"); // └
-    } else if (is_right_child) {
-        rightprefix.append(" ");
-        leftprefix.append("\xE2\x94\x82"); // │
-        nodeprefix.append("\xE2\x94\x8C"); // ┌
-    } else {
-        rightprefix.append(" ");
-        leftprefix.append(" ");
-        nodeprefix.append("\xE2\x94\x80"); // ─
-    }
-    pretty_print(R, right_ptr, rightprefix, false, true);
-    printf("%s\xE2\x94\xA4", nodeprefix.c_str()); // ┤
-    n.dump();
-    printf("\n");
-    pretty_print(R, left_ptr, leftprefix, true, false);
-}
 
-bool reconstruct_flag(MPCTIO &tio, yield_t &yield, RegBS flag) {
-    RegBS peer_flag;
-    RegBS reconstructed_flag;
-    if (tio.player() == 1) {
-        tio.queue_peer(&flag, sizeof(flag));
-    } else {
-        RegBS peer_flag;
-        tio.recv_peer(&peer_flag, sizeof(peer_flag));
-        reconstructed_flag ^= peer_flag;
+    inline void newnode() {
+        key.randomize(8);
+        pointers.set(0);
+        value.randomize();
     }
 
-    if (tio.player() == 0) {
-        tio.queue_peer(&flag, sizeof(flag));
-    } else {
-        RegBS peer_flag;
-        tio.recv_peer(&peer_flag, sizeof(peer_flag));
-        reconstructed_flag ^= peer_flag;
+    inline void randomize() {
+        key.randomize();
+        pointers.randomize();
+        value.randomize();
     }
-    
-    return reconstructed_flag.bshare;
-}
 
-void BST::pretty_print(MPCTIO &tio, yield_t &yield) {
-    RegXS peer_root;
-    RegXS reconstructed_root = root;
-    if (tio.player() == 1) {
-        tio.queue_peer(&root, sizeof(root));
-    } else {
-        RegXS peer_root;
-        tio.recv_peer(&peer_root, sizeof(peer_root));
-        reconstructed_root += peer_root;
+    inline Node &operator+=(const Node &rhs) {
+        this->key += rhs.key;
+        this->pointers += rhs.pointers;
+        this->value += rhs.value;
+        return *this;
     }
 
-    auto A = oram->flat(tio, yield);
-    auto R = A.reconstruct();
-    if(tio.player()==0) {
-        pretty_print(R, reconstructed_root.xshare);
+    inline Node operator+(const Node &rhs) const {
+        Node res = *this;
+        res += rhs;
+        return res;
     }
-}
 
-// Check the BST invariant of the tree (that all keys to the left are
-// less than or equal to this key, all keys to the right are strictly
-// greater, and this is true recursively).  Returns a
-// tuple<bool,address_t>, where the bool says whether the BST invariant
-// holds, and the address_t is the height of the tree (which will be
-// useful later when we check AVL trees).
-std::tuple<bool, address_t> BST::check_bst(const std::vector<Node> &R,
-    value_t node, value_t min_key = 0, value_t max_key = ~0)
-{
-    if (node == 0) {
-        return { true, 0 };
+    inline Node &operator-=(const Node &rhs) {
+        this->key -= rhs.key;
+        this->pointers -= rhs.pointers;
+        this->value -= rhs.value;
+        return *this;
     }
-    const Node &n = R[node];
-    value_t key = n.key.ashare;
-    value_t left_ptr = extractLeftPtr(n.pointers).xshare;
-    value_t right_ptr = extractRightPtr(n.pointers).xshare;
-    auto [leftok, leftheight ] = check_bst(R, left_ptr, min_key, key);
-    auto [rightok, rightheight ] = check_bst(R, right_ptr, key+1, max_key);
-    address_t height = leftheight;
-    if (rightheight > height) {
-        height = rightheight;
+
+    inline Node operator-(const Node &rhs) const {
+        Node res = *this;
+        res -= rhs;
+        return res;
     }
-    height += 1;
-    return { leftok && rightok && key >= min_key && key <= max_key,
-        height };
-}
 
-void BST::check_bst(MPCTIO &tio, yield_t &yield) {
-    auto A = oram->flat(tio, yield);
-    auto R = A.reconstruct();
+    inline Node operator-() const {
+        Node res;
+        res.key = -this->key;
+        res.pointers = -this->pointers;
+        res.value = -this->value;
+        return res;
+    }
 
-    auto [ ok, height ] = check_bst(R, root.xshare);
-    printf("BST structure %s\nBST height = %u\n",
-        ok ? "ok" : "NOT OK", height);
-}  
+    // Multiply each field by the local share of the corresponding field
+    // in the argument
+    inline Node mulshare(const Node &rhs) const {
+        Node res = *this;
+        res.key.mulshareeq(rhs.key);
+        res.pointers.mulshareeq(rhs.pointers);
+        res.value.mulshareeq(rhs.value);
+        return res;
+    }
 
-void newnode(Node &a) {
-    a.key.randomize(8);
-    a.pointers.set(0);
-    a.value.randomize();
-}
+    // You need a method to turn a leaf node of a DPF into a share of a
+    // unit element of your type.  Typically set each RegAS to
+    // dpf.unit_as(leaf) and each RegXS or RegBS to dpf.unit_bs(leaf).
+    // Note that RegXS will extend a RegBS of 1 to the all-1s word, not
+    // the word with value 1.  This is used for ORAM reads, where the
+    // same DPF is used for all the fields.
+    inline void unit(const RDPF &dpf, DPFnode leaf) {
+        key = dpf.unit_as(leaf);
+        pointers = dpf.unit_bs(leaf);
+        value = dpf.unit_bs(leaf);
+    }
 
-void BST::initialize(int num_players, size_t size) {
-    this->MAX_SIZE = size;
-    oram = new Duoram<Node>(num_players, size);
-}
+    // Perform an update on each of the fields, using field-specific
+    // MemRefs constructed from the Shape shape and the index idx
+    template <typename Sh, typename U>
+    inline static void update(Sh &shape, yield_t &shyield, U idx,
+            const Node &M) {
+        run_coroutines(shyield,
+            [&shape, &idx, &M] (yield_t &yield) {
+                Sh Sh_coro = shape.context(yield);
+                Sh_coro[idx].NODE_KEY += M.key;
+            },
+            [&shape, &idx, &M] (yield_t &yield) {
+                Sh Sh_coro = shape.context(yield);
+                Sh_coro[idx].NODE_POINTERS += M.pointers;
+            },
+            [&shape, &idx, &M] (yield_t &yield) {
+                Sh Sh_coro = shape.context(yield);
+                Sh_coro[idx].NODE_VALUE += M.value;
+            });
+    }
+};
 
+// I/O operations (for sending over the network)
 
-std::tuple<RegXS, RegBS> BST::insert(MPCTIO &tio, yield_t &yield, RegXS ptr,
-    const Node &new_node, Duoram<Node>::Flat &A, int TTL, RegBS isDummy) {
-    if(TTL==0) {
-        RegBS zero;
-        return {ptr, zero};
-    }
+template <typename T>
+T& operator>>(T& is, Node &x)
+{
+    is >> x.key >> x.pointers >> x.value;
+    return is;
+}
 
-    RegBS isNotDummy = isDummy ^ (tio.player());
-    Node cnode = A[ptr];
-    // Compare key
-    auto [lteq, gt] = compare_keys(tio, yield, cnode, new_node);
-
-    // Depending on [lteq, gt] select the next ptr/index as
-    // upper 32 bits of cnode.pointers if lteq
-    // lower 32 bits of cnode.pointers if gt 
-    RegXS left = extractLeftPtr(cnode.pointers);
-    RegXS right = extractRightPtr(cnode.pointers);
-    
-    RegXS next_ptr;
-    mpc_select(tio, yield, next_ptr, gt, left, right, 32);
-
-    CDPF dpf = tio.cdpf(yield);
-    size_t &aes_ops = tio.aes_ops();
-    // F_z: Check if this is last node on path
-    RegBS F_z = dpf.is_zero(tio, yield, next_ptr, aes_ops);
-    RegBS F_i;
-
-    // F_i: If this was last node on path (F_z), and isNotDummy insert.
-    mpc_and(tio, yield, F_i, (isNotDummy), F_z);
-     
-    isDummy^=F_i;
-    auto [wptr, direction] = insert(tio, yield, next_ptr, new_node, A, TTL-1, isDummy);
-    
-    RegXS ret_ptr;
-    RegBS ret_direction;
-    // If we insert here (F_i), return the ptr to this node as wptr
-    // and update direction to the direction taken by compare_keys
-    mpc_select(tio, yield, ret_ptr, F_i, wptr, ptr);
-    //ret_direction = direction + F_p(direction - gt)
-    mpc_and(tio, yield, ret_direction, F_i, direction^gt);
-    ret_direction^=direction;  
-
-    return {ret_ptr, ret_direction};
+template <typename T>
+T& operator<<(T& os, const Node &x)
+{
+    os << x.key << x.pointers << x.value;
+    return os;
 }
 
+// This macro will define I/O on tuples of two or three of the cell type
 
-// Insert(root, ptr, key, TTL, isDummy) -> (new_ptr, wptr, wnode, f_p)
-void BST::insert(MPCTIO &tio, yield_t &yield, const Node &node, Duoram<Node>::Flat &A) {
-    bool player0 = tio.player()==0;
-    // If there are no items in tree. Make this new item the root.
-    if(num_items==0) {
-        Node zero;
-        A[0] = zero;
-        A[1] = node;
-        (root).set(1*tio.player());
-        num_items++;
-        //printf("num_items == %ld!\n", num_items);
-        return;
-    } else {
-        // Insert node into next free slot in the ORAM
-        int new_id = 1 + num_items;
-        int TTL = num_items++;
-        A[new_id] = node;
-        RegXS new_addr;
-        new_addr.set(new_id * tio.player());
-        RegBS isDummy;
-
-        //Do a recursive insert
-        auto [wptr, direction] = insert(tio, yield, root, node, A, TTL, isDummy);
-
-        //Complete the insertion by reading wptr and updating its pointers
-        RegXS pointers = A[wptr].NODE_POINTERS;
-        RegXS left_ptr = extractLeftPtr(pointers);
-        RegXS right_ptr = extractRightPtr(pointers);
-        RegXS new_right_ptr, new_left_ptr;
-        mpc_select(tio, yield, new_right_ptr, direction, right_ptr, new_addr);
-        if(player0) {
-            direction^=1;
-        }
-        mpc_select(tio, yield, new_left_ptr, direction, left_ptr, new_addr);
-        setLeftPtr(pointers, new_left_ptr);
-        setRightPtr(pointers, new_right_ptr);
-        A[wptr].NODE_POINTERS = pointers;
-        //printf("num_items == %ld!\n", num_items);
-    } 
-}
+DEFAULT_TUPLE_IO(Node)
 
+int num_items = 0;
+RegAS root;
 
-void BST::insert(MPCTIO &tio, yield_t &yield, Node &node) {
-    auto A = oram->flat(tio, yield);
-    auto R = A.reconstruct();
+std::tuple<RegBS, RegBS> compare_keys(Node n1, Node n2, MPCTIO tio, yield_t &yield) {
+  CDPF cdpf = tio.cdpf(yield);
+  auto [lt, eq, gt] = cdpf.compare(tio, yield, n2.key - n1.key, tio.aes_ops());
+  RegBS lteq = lt^eq;
+  return {lteq, gt};
+}
 
-    insert(tio, yield, node, A);
-    /*
-    // To visualize database and tree after each insert:
-    if (tio.player() == 0) {
-        for(size_t i=0;i<R.size();++i) {
-            printf("\n%04lx ", i);
-            R[i].dump();
-        }
-        printf("\n");
-    }
-    pretty_print(R, 1);
-    */
+RegBS check_key_zero(Node n1, MPCTIO tio, yield_t &yield) {
+  CDPF cdpf = tio.cdpf(yield);
+  RegAS zero;
+  auto [lt, eq, gt] = cdpf.compare(tio, yield, n1.key - zero, tio.aes_ops());
+  return eq;
 }
 
-/*
-// Compute in MPC a | b 
-void mpc_or(MPCTIO &tio, yield_t &yield, RegBS &result, RegBS a, RegBS b) {
-    int player0 = tio.player();
-    if(player0) {
-        a^=1;
-        b^=1;    
-    } 
-
-    mpc_and(tio, yield, result, a, b);
-    if(player0)
-        result^=1;
+RegBS check_ptr_zero(RegXS ptr, MPCTIO tio, yield_t &yield) {
+  CDPF cdpf = tio.cdpf(yield);
+  RegAS ptr_as;
+  mpc_xs_to_as(tio, yield, ptr_as, ptr);
+  RegAS zero;
+  auto [lt, eq, gt] = cdpf.compare(tio, yield, ptr_as - zero, tio.aes_ops());
+  return eq;
 }
-*/
-
-int BST::del(MPCTIO &tio, yield_t &yield, RegXS ptr, RegAS del_key,
-     Duoram<Node>::Flat &A, RegBS af, RegBS fs, int TTL, 
-    del_return &ret_struct) {
-
-    if(TTL==0) {
-        //Reconstruct and return af
-        bool af = reconstruct_flag(tio, yield, af);
-        printf("Reconstructed flag = %d\n", af);
-        return af;
-    } else {
-        bool player0 = tio.player()==0;
-        Node node = A[ptr];
-        // Compare key
-
-        CDPF cdpf = tio.cdpf(yield);
-        auto [lt, eq, gt] = cdpf.compare(tio, yield, node.key - del_key, tio.aes_ops());
-        // c is the direction bit for next_ptr 
-        // (c=0: go left or c=1: go right)
-        RegBS c = gt;
-        // lf = local found. We found the key to delete in this level.
-        RegBS lf = eq;
-
-        // Depending on [lteq, gt] select the next ptr/index as
-        // upper 32 bits of cnode.pointers if lteq
-        // lower 32 bits of cnode.pointers if gt 
-        RegXS left = extractLeftPtr(node.pointers);
-        RegXS right = extractRightPtr(node.pointers);
-        
-        CDPF dpf = tio.cdpf(yield);
-        size_t &aes_ops = tio.aes_ops();
-        // Check if left and right children are 0, and compute F_0, F_1, F_2
-        RegBS l0 = dpf.is_zero(tio, yield, left, aes_ops);
-        RegBS r0 = dpf.is_zero(tio, yield, right, aes_ops);
-        RegBS F_0, F_1, F_2;
-        // F_0 = l0 & r0
-        mpc_and(tio, yield, F_0, l0, r0);
-        // F_1 = l0 \xor r0
-        F_1 = l0 ^ r0;
-        // F_2 = !(F_0 + F_1) (Only 1 of F_0, F_1, and F_2 can be true)
-        F_2 = F_0 ^ F_1;
-        if(player0)
-            F_2^=1;
-
-        // We set next ptr based on c, but we need to handle three 
-        // edge cases where we do not go by just the comparison result
-        RegXS next_ptr;
-        RegBS c_prime;
-        // Case 1: found the node here (lf) or we are finding successor (fs)
-        // and there is only one child. We traverse down the lone child path.
-        RegBS F_c11, F_c12, F_c2, F_c3;
-        // Case 1a: lf & F_1
-        mpc_and(tio, yield, F_c11, lf, F_1);
-        // Case 1b: fs & F_1
-        mpc_and(tio, yield, F_c12, fs, F_1);
-        // Set c_prime for Case 1a and 1b
-        mpc_select(tio, yield, c_prime, F_c1, c, l0);
-        mpc_select(tio, yield, c_prime, F_c2, c, l0);
-
-        // s1: shares of 1 bit, s0: shares of 0 bit
-        RegBS s1, s0;
-        s1.set(tio.player()==1);
-        // Case 2: found the node here (lf) and node has both children (F_2)
-        // In find successor case, so find inorder successor
-        // (Go right and then find leftmost child.)
-        mpc_and(tio, yield, F_c2, lf, F_2);
-        mpc_select(tio, yield, c_prime, F_c2, c, s1);
-
-        // Case 3: finding successor (fs) and node has both children (F_2)
-        // Go left. 
-        mpc_and(tio, yield, F_c3, fs, F_2);
-        mpc_select(tio, yield, c_prime, F_c3, c, s0);
-
-        // Set next_ptr
-        mpc_select(tio, yield, next_ptr, c_prime, left, right, 32);
-        
-        RegBS af_prime, fs_prime;
-        mpc_or(tio, yield, af_prime, af, lf);
 
-        // If in Case 2, set fs. We are now finding successor
-        mpc_or(tio, yield, fs_prime, fs, F_c2); 
-        int key_found = del(tio, yield, next_ptr, del_key, A, af_prime, fs_prime, TTL-1, ret_struct);
+// Assuming pointer of 64 bits is split as:
+// - 32 bits Left ptr
+// - 32 bits Right ptr
+// < Left, Right>
 
-        // If we didn't find the key, we can end here.
-        if(!key_found)
-          return 0;
+inline RegXS extractLeftPtr(RegXS pointer){ 
+  return ((pointer&(0xFFFFFFFF00000000))>>32); 
+}
 
-        // Update node.left and node.right with ret_struct.rptr and [c] as slct bit
+inline RegXS extractRightPtr(RegXS pointer){
+  return (pointer&(0x00000000FFFFFFFF)); 
+}
 
-        // Update the return structure        
+inline void setLeftPtr(RegXS &pointer, RegXS new_ptr){ 
+  pointer&=(0x00000000FFFFFFFF);
+  pointer+=(new_ptr<<32);
+}
 
-    }
+inline void setRightPtr(RegXS &pointer, RegXS new_ptr){
+  pointer&=(0xFFFFFFFF00000000);
+  pointer+=(new_ptr);
+}
 
-    return 1;
+std::tuple<RegAS, RegBS> insert(RegAS &ptr, Node &new_node, auto A, int TTL, RegBS isDummy, MPCTIO &tio, yield_t &yield) {
+  if(TTL==0) {
+    RegBS zero;
+    return {ptr, zero};
+  }
+
+  Node cnode = A[ptr];
+  //Compare key
+  auto [lteq, gt] = compare_keys(cnode, new_node, tio, yield);
+
+  // Depending on [lteq, gt] select the next ptr/index as
+  // upper 32 bits of cnode.pointers if lteq
+  // lower 32 bits of cnode.pointers if gt 
+  RegXS left = extractLeftPtr(cnode.pointers);
+  RegXS right = extractRightPtr(cnode.pointers);
+  
+  RegXS next_ptr;
+  mpc_select(tio, yield, next_ptr, gt, left, right, 32);
+
+  RegBS F_z = check_ptr_zero(next_ptr, tio, yield); 
+  RegBS F_i;
+
+  if(tio.player()==0) {
+    isDummy^=1;
+  }
+  mpc_and(tio, yield, F_i, (isDummy), F_z);
+  if(tio.player()==0) {
+    isDummy^=1;
+  }
+   
+  RegAS next_ptr_as;
+  mpc_xs_to_as(tio, yield, next_ptr_as, next_ptr, 32);
+  isDummy^=F_i;
+  auto [wptr, direction] = insert(next_ptr_as, new_node, A, TTL-1, isDummy, tio, yield);
+  
+  RegAS ret_ptr;
+  RegBS ret_direction;
+  mpc_select(tio, yield, ret_ptr, F_i, wptr, ptr);
+  //ret_direction = direction + F_p(direction - gt)
+  mpc_and(tio, yield, ret_direction, F_i, direction^gt);
+  ret_direction^=direction;  
+
+  return {ret_ptr, ret_direction};
 }
 
 
-int BST::del(MPCTIO &tio, yield_t &yield, RegAS del_key) {
-    if(num_items==0)
-        return 0;
-    if(num_items==1) {
-        //Delete root
-        auto A = oram->flat(tio, yield);
-        Node zero;
-        A[0] = zero;
-        num_items--;
-        return 1; 
-    } else {
-        int TTL = num_items;
-        // Flags for already found (af) item to delete and find successor (fs)
-        // if this deletion requires a successor swap
-        RegBS af;
-        RegBS fs;
-        del_return ret_struct; 
-        auto A = oram->flat(tio, yield);
-        int success = del(tio, yield, root, del_key, A, af, fs, TTL, ret_struct); 
-        printf ("Success =  %d\n", success); 
-      return 1;
+// Insert(root, ptr, key, TTL, isDummy) -> (new_ptr, wptr, wnode, f_p)
+void insert(RegAS &root, Node &node, auto A, MPCTIO &tio, yield_t &yield) {
+  if(num_items==0) {
+    Node zero;
+    zero.zeronode();
+    A[0] = zero;
+    A[1] = node;
+    (root).set(1*tio.player());
+    num_items++;
+    return;
+  }
+  else {
+    // Insert node into next free slot in the ORAM
+    int new_id = 1 + num_items;
+    int TTL = num_items++;
+    A[new_id] = node;
+    RegXS new_addr;
+    new_addr.set(new_id * tio.player());
+    RegBS isDummy;
+    isDummy.set(0);
+
+    //Do a recursive insert
+    auto [wptr, direction] = insert(root, node, A, TTL, isDummy, tio, yield);
+
+    //Complete the insertion by reading wptr and updating its pointers
+    RegXS pointers = A[wptr].NODE_POINTERS;
+    RegXS left_ptr = extractLeftPtr(pointers);
+    RegXS right_ptr = extractRightPtr(pointers);
+    RegXS new_right_ptr, new_left_ptr;
+    mpc_select(tio, yield, new_right_ptr, direction, right_ptr, new_addr);
+    if(tio.player()==0) {
+      direction^=1;
     }
+    mpc_select(tio, yield, new_left_ptr, direction, left_ptr, new_addr);
+    setLeftPtr(pointers, new_left_ptr);
+    setRightPtr(pointers, new_right_ptr);
+    A[wptr].NODE_POINTERS = pointers;
+  }
+  
 }
 
-// Now we use the node in various ways.  This function is called by
+// Now we use the cell in various ways.  This function is called by
 // online.cpp.
+
 void bst(MPCIO &mpcio,
     const PRACOptions &opts, char **args)
 {
-    nbits_t depth=3;
+    nbits_t depth=5;
 
     if (*args) {
         depth = atoi(*args);
         ++args;
     }
-    size_t items = (size_t(1)<<depth)-1;
-    if (*args) {
-        items = atoi(*args);
-        ++args;
-    }
 
     MPCTIO tio(mpcio, 0, opts.num_threads);
-    run_coroutines(tio, [&tio, depth, items] (yield_t &yield) {
+    run_coroutines(tio, [&tio, depth] (yield_t &yield) {
         size_t size = size_t(1)<<depth;
-        BST tree(tio.player(), size);
-
-        /*
-        Node node; 
-        for(size_t i = 1; i<=items; i++) {
-          newnode(node);
-          node.key.set(i * tio.player());
-          tree.insert(tio, yield, node);
+        Duoram<Node> oram(tio.player(), size);
+        auto A = oram.flat(tio, yield);
+
+        Node c; 
+        for(int i = 0; i<30; i++) {
+          c.newnode();
+          insert(root, c, A, tio, yield);
         }
-       
-        tree.pretty_print(tio, yield);
-        */
         
-        RegAS del_key;
-        tree.del(tio, yield, del_key);
 
-        /*
         if (depth < 10) {
-            //oram.dump();
+            oram.dump();
             auto R = A.reconstruct();
-            // Reconstruct the root
-            if (tio.player() == 1) {
-                tio.queue_peer(&root, sizeof(root));
-            } else {
-                RegXS peer_root;
-                tio.recv_peer(&peer_root, sizeof(peer_root));
-                root += peer_root;
-            }
             if (tio.player() == 0) {
                 for(size_t i=0;i<R.size();++i) {
                     printf("\n%04lx ", i);
                     R[i].dump();
                 }
                 printf("\n");
-                pretty_print(R, root.xshare);
-                auto [ ok, height ] = check_bst(R, root.xshare);
-                printf("BST structure %s\nBST height = %u\n",
-                    ok ? "ok" : "NOT OK", height);
             }
         }
-        */ 
     });
 }