12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726 |
- #include <functional>
- #include "avl.hpp"
- void print_green(std::string line) {
- printf("%s%s%s", KGRN, line.c_str(), KNRM);
- }
- void print_red(std::string line) {
- printf("%s%s%s", KRED, line.c_str(), KNRM);
- }
- // Pretty-print a reconstructed BST, rooted at node. is_left_child and
- // is_right_child indicate whether node is a left or right child of its
- // parent. They cannot both be true, but the root of the tree has both
- // of them false.
- void AVL::pretty_print(const std::vector<Node> &R, value_t node,
- const std::string &prefix = "", bool is_left_child = false,
- bool is_right_child = false)
- {
- if (node == 0) {
- // NULL pointer
- if (is_left_child) {
- printf("%s\xE2\x95\xA7\n", prefix.c_str()); // ╧
- } else if (is_right_child) {
- printf("%s\xE2\x95\xA4\n", prefix.c_str()); // ╤
- } else {
- printf("%s\xE2\x95\xA2\n", prefix.c_str()); // ╢
- }
- return;
- }
- const Node &n = R[node];
- value_t left_ptr = getAVLLeftPtr(n.pointers).xshare;
- value_t right_ptr = getAVLRightPtr(n.pointers).xshare;
- std::string rightprefix(prefix), leftprefix(prefix),
- nodeprefix(prefix);
- if (is_left_child) {
- rightprefix.append("\xE2\x94\x82"); // │
- leftprefix.append(" ");
- nodeprefix.append("\xE2\x94\x94"); // └
- } else if (is_right_child) {
- rightprefix.append(" ");
- leftprefix.append("\xE2\x94\x82"); // │
- nodeprefix.append("\xE2\x94\x8C"); // ┌
- } else {
- rightprefix.append(" ");
- leftprefix.append(" ");
- nodeprefix.append("\xE2\x94\x80"); // ─
- }
- pretty_print(R, right_ptr, rightprefix, false, true);
- printf("%s\xE2\x94\xA4", nodeprefix.c_str()); // ┤
- dumpAVL(n);
- printf("\n");
- pretty_print(R, left_ptr, leftprefix, true, false);
- }
- void AVL::print_oram(MPCTIO &tio, yield_t &yield) {
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- for(size_t i=0;i<R.size();++i) {
- printf("\n%04lx ", i);
- R[i].dump();
- }
- printf("\n");
- }
- void AVL::pretty_print(MPCTIO &tio, yield_t &yield) {
- RegXS peer_root;
- RegXS reconstructed_root = root;
- if (tio.player() == 1) {
- tio.queue_peer(&root, sizeof(root));
- } else {
- RegXS peer_root;
- tio.recv_peer(&peer_root, sizeof(peer_root));
- reconstructed_root += peer_root;
- }
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- if(tio.player()==0) {
- pretty_print(R, reconstructed_root.xshare);
- }
- }
- // Check the BST invariant of the tree (that all keys to the left are
- // less than or equal to this key, all keys to the right are strictly
- // greater, and this is true recursively). Returns a
- // tuple<bool,address_t>, where the bool says whether the BST invariant
- // holds, and the address_t is the height of the tree (which will be
- // useful later when we check AVL trees).
- std::tuple<bool, bool, address_t> AVL::check_avl(const std::vector<Node> &R,
- value_t node, value_t min_key = 0, value_t max_key = ~0)
- {
- if (node == 0) {
- return { true, true, 0 };
- }
- const Node &n = R[node];
- value_t key = n.key.ashare;
- value_t left_ptr = getAVLLeftPtr(n.pointers).xshare;
- value_t right_ptr = getAVLRightPtr(n.pointers).xshare;
- auto [leftok, leftavlok, leftheight ] = check_avl(R, left_ptr, min_key, key);
- auto [rightok, rightavlok, rightheight ] = check_avl(R, right_ptr, key+1, max_key);
- address_t height = leftheight;
- if (rightheight > height) {
- height = rightheight;
- }
- height += 1;
- int heightgap = leftheight - rightheight;
- bool avlok = (abs(heightgap)<2);
- //printf("node = %ld, leftok = %d, rightok = %d\n", node, leftok, rightok);
- return { leftok && rightok && key >= min_key && key <= max_key,
- avlok && leftavlok && rightavlok, height};
- }
- void AVL::check_avl(MPCTIO &tio, yield_t &yield) {
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- RegXS rec_root = this->root;
- if (tio.player() == 1) {
- tio.queue_peer(&(this->root), sizeof(this->root));
- } else {
- RegXS peer_root;
- tio.recv_peer(&peer_root, sizeof(peer_root));
- rec_root+= peer_root;
- }
- if (tio.player() == 0) {
- auto [ bst_ok, avl_ok, height ] = check_avl(R, rec_root.xshare);
- printf("BST structure %s\nAVL structure %s\nTree height = %u\n",
- bst_ok ? "ok" : "NOT OK", avl_ok ? "ok" : "NOT OK", height);
- }
- }
- void AVL::initialize(int num_players, size_t size) {
- this->MAX_SIZE = size;
- oram = new Duoram<Node>(num_players, size);
- }
- /*
- Rotate: (gp = grandparent (if exists), p = parent, c = child)
- This rotates the p -> c link.
- gp gp
- \ \
- p --- Left rotate ---> c
- \ /
- c p
- gp gp
- \ \
- p --- Right rotate ---> c
- / \
- c p
- */
- void AVL::rotate(MPCTIO &tio, yield_t &yield, RegXS &gp_pointers, RegXS p_ptr,
- RegXS &p_pointers, RegXS c_ptr, RegXS &c_pointers, RegBS dir_gpp,
- RegBS dir_pc, RegBS isReal, RegBS F_gp) {
- bool player0 = tio.player()==0;
- RegXS gp_left = getAVLLeftPtr(gp_pointers);
- RegXS gp_right = getAVLRightPtr(gp_pointers);
- RegXS p_left = getAVLLeftPtr(p_pointers);
- RegXS p_right = getAVLRightPtr(p_pointers);
- RegXS c_left = getAVLLeftPtr(c_pointers);
- RegXS c_right = getAVLRightPtr(c_pointers);
- RegXS ptr_upd;
- // F_gpp: Flag to update gp -> p link, F_pc: Flag to update p -> c link
- RegBS F_gpp, F_pc, F_gppr, F_gppl;
- // We care about !F_gp. If !F_gp, then we do the gp->p link updates.
- // Otherwise, we do NOT do any updates to gp-> p link;
- // since F_gp==1, implies gp does not exist and parent is root.
- if(player0)
- F_gp^=1;
- mpc_and(tio, yield, F_gpp, F_gp, isReal);
- // i) gp[dir_gpp] <-- c_ptr
- mpc_select(tio, yield, ptr_upd, F_gpp, p_ptr, c_ptr);
- mpc_and(tio, yield, F_gppr, F_gpp, dir_gpp);
- mpc_select(tio, yield, gp_right, F_gppr, gp_right, ptr_upd);
- if(player0)
- dir_gpp^=1;
- mpc_and(tio, yield, F_gppl, F_gpp, dir_gpp);
- mpc_select(tio, yield, gp_left, F_gppl, gp_left, ptr_upd);
- setAVLLeftPtr(gp_pointers, gp_left);
- setAVLRightPtr(gp_pointers, gp_right);
- // ii) p[dir_pc] <-- c[!dir_pc] and iii) c[!dir_pc] <-- p_ptr
- RegBS not_dir_pc = dir_pc;
- if(player0)
- not_dir_pc^=1;
- RegXS c_not_dir_pc; //c[!dir_pc]
- // ndpc_right: if not_dir_pc is right
- // ndpc_left: if not_dir_pc is left
- RegBS F_ndpc_right, F_ndpc_left;
- mpc_and(tio, yield, F_ndpc_right, isReal, not_dir_pc);
- mpc_select(tio, yield, c_not_dir_pc, F_ndpc_right, c_not_dir_pc, c_right, AVL_PTR_SIZE);
- // Negating not_dir_pc to handle left case
- if(player0)
- not_dir_pc^=1;
- mpc_and(tio, yield, F_ndpc_left, isReal, not_dir_pc);
- mpc_select(tio, yield, c_not_dir_pc, F_ndpc_left, c_not_dir_pc, c_left, AVL_PTR_SIZE);
- // Now c_not_dir_pc = c[!dir_pc]
- // ii) p[dir_pc] <-- c[!dir_pc]
- mpc_select(tio, yield, p_left, F_ndpc_right, p_left, c_not_dir_pc, AVL_PTR_SIZE);
- mpc_select(tio, yield, p_right, F_ndpc_left, p_right, c_not_dir_pc, AVL_PTR_SIZE);
- setAVLLeftPtr(p_pointers, p_left);
- setAVLRightPtr(p_pointers, p_right);
- // iii): c[!dir_pc] <-- p_ptr
- mpc_select(tio, yield, ptr_upd, isReal, c_not_dir_pc, p_ptr, AVL_PTR_SIZE);
- mpc_and(tio, yield, F_pc, dir_pc, isReal);
- mpc_select(tio, yield, c_left, F_pc, c_left, ptr_upd, AVL_PTR_SIZE);
- if(player0)
- dir_pc^=1;
- // dir_pc <-- !dir_pc
- mpc_and(tio, yield, F_pc, dir_pc, isReal);
- mpc_select(tio, yield, c_right, F_pc, c_right, ptr_upd, AVL_PTR_SIZE);
- setAVLLeftPtr(c_pointers, c_left);
- setAVLRightPtr(c_pointers, c_right);
- }
- /*
- In updateBalanceDel, the position of imbalance, and shift direction for both
- cases are inverted, since a bal_upd on a child implies it reduced height.
- If F_rs: (bal_upd & right_child)
- imbalance, bal_l, balanced, bal_r
- And then left shift to get imbalance bit, and new bal_l, bal_r bits
- else if F_ls: (bal_upd & left_child)
- bal_l, balanced, bal_r, imbalance
- And then right shift to get imbalance bit, and new bal_l, bal_r bits
- */
- std::tuple<RegBS, RegBS, RegBS, RegBS> AVL::updateBalanceDel(MPCTIO &tio, yield_t &yield,
- RegBS bal_l, RegBS bal_r, RegBS bal_upd, RegBS child_dir) {
- bool player0 = tio.player()==0;
- RegBS s0;
- RegBS F_rs, F_ls, balanced, imbalance;
- /*
- bool rec_bal_l, rec_bal_r, rec_bal_upd;
- rec_bal_l = reconstruct_RegBS(tio, yield, bal_l);
- rec_bal_r = reconstruct_RegBS(tio, yield, bal_r);
- rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
- printf("In updateBalanceDel, beforeBalance: rec_bal_l = %d, rec_bal_r = %d, rec_bal_upd = %d\n",
- rec_bal_l, rec_bal_r, rec_bal_upd);
- */
- // balanced = is the node currently balanced
- balanced = bal_l ^ bal_r;
- //F_ls (Flag left shift) <- child_dir & bal_upd
- mpc_and(tio, yield, F_ls, child_dir, bal_upd);
- if(player0) {
- child_dir^=1;
- balanced^=1;
- }
- //F_rs (Flag right shift) <- !child_dir & bal_upd
- mpc_and(tio, yield, F_rs, child_dir, bal_upd);
- /*
- bool rec_F_ls, rec_F_rs;
- rec_F_ls = reconstruct_RegBS(tio, yield, F_ls);
- rec_F_rs = reconstruct_RegBS(tio, yield, F_rs);
- printf("In updateBalanceDel: rec_F_ls = %d, rec_F_rs = %d\n",
- rec_F_ls, rec_F_rs);
- */
- // Left shift if F_ls
- mpc_select(tio, yield, imbalance, F_ls, imbalance, bal_l);
- mpc_select(tio, yield, bal_l, F_ls, bal_l, balanced);
- mpc_select(tio, yield, balanced, F_ls, balanced, bal_r);
- mpc_select(tio, yield, bal_r, F_ls, bal_r, s0);
- // Right shift if F_rs
- mpc_select(tio, yield, imbalance, F_rs, imbalance, bal_r);
- mpc_select(tio, yield, bal_r, F_rs, bal_r, balanced);
- mpc_select(tio, yield, balanced, F_rs, balanced, bal_l);
- mpc_select(tio, yield, bal_l, F_rs, bal_l, s0);
- /*
- rec_bal_l = reconstruct_RegBS(tio, yield, bal_l);
- rec_bal_r = reconstruct_RegBS(tio, yield, bal_r);
- rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
- printf("In updateBalanceDel, afterBalance: rec_bal_l = %d, rec_bal_r = %d, rec_bal_upd = %d\n",
- rec_bal_l, rec_bal_r, rec_bal_upd);
- */
- // if(bal_upd) and not imbalance bal_upd<-0
- RegBS bu0;
- if(player0){
- imbalance^=1;
- }
- mpc_and(tio, yield, bu0, bal_upd, imbalance);
- mpc_select(tio, yield, bal_upd, bu0, bal_upd, s0);
- if(player0){
- imbalance^=1;
- }
- // Any bal_upd, propogates all the way up to root
- return {bal_l, bal_r, bal_upd, imbalance};
- }
- /*
- If F_rs: (bal_upd & right_child)
- bal_l, balanced, bal_r, imbalance
- And then right shift to get imbalance bit, and new bal_l, bal_r bits
- else if F_ls: (bal_upd & left_child)
- imbalance, bal_l, balanced, bal_r
- And then left shift to get imbalance bit, and new bal_l, bal_r bits
- */
- std::tuple<RegBS, RegBS, RegBS, RegBS> AVL::updateBalanceIns(MPCTIO &tio, yield_t &yield,
- RegBS bal_l, RegBS bal_r, RegBS bal_upd, RegBS child_dir) {
- bool player0 = tio.player()==0;
- RegBS s1, s0;
- s1.set(tio.player()==1);
- RegBS F_rs, F_ls, balanced, imbalance;
- // balanced = is the node currently balanced
- balanced = bal_l ^ bal_r;
- //F_rs (Flag right shift) <- child_dir & bal_upd
- mpc_and(tio, yield, F_rs, child_dir, bal_upd);
- if(player0) {
- child_dir^=1;
- balanced^=1;
- }
- //F_ls (Flag left shift) <- !child_dir & bal_upd
- mpc_and(tio, yield, F_ls, child_dir, bal_upd);
- // Right shift if child_dir = 1 & bal_upd = 1
- mpc_select(tio, yield, imbalance, F_rs, imbalance, bal_r);
- mpc_select(tio, yield, bal_r, F_rs, bal_r, balanced);
- mpc_select(tio, yield, balanced, F_rs, balanced, bal_l);
- mpc_select(tio, yield, bal_l, F_rs, bal_l, s0);
- // Left shift if child_dir = 0 & bal_upd = 1
- mpc_select(tio, yield, imbalance, F_ls, imbalance, bal_l);
- mpc_select(tio, yield, bal_l, F_ls, bal_l, balanced);
- mpc_select(tio, yield, balanced, F_ls, balanced, bal_r);
- mpc_select(tio, yield, bal_r, F_ls, bal_r, s0);
- // bal_upd' <- bal_upd ^ imbalance
- RegBS F_bu0;
- mpc_and(tio, yield, F_bu0, bal_upd, balanced);
- mpc_select(tio, yield, bal_upd, F_bu0, bal_upd, s0);
- mpc_select(tio, yield, bal_upd, imbalance, bal_upd, s0);
- return {bal_l, bal_r, bal_upd, imbalance};
- }
- std::tuple<RegBS, RegBS, RegXS, RegBS> AVL::insert(MPCTIO &tio, yield_t &yield, RegXS ptr,
- RegAS insert_key, Duoram<Node>::Flat &A, int TTL, RegBS isDummy, avl_insert_return *ret) {
- if(TTL==0) {
- RegBS z;
- return {z, z, z, z};
- }
- RegBS isReal = isDummy ^ (tio.player());
- Node cnode = A[ptr];
- // Compare key
- auto [lteq, gt] = compare_keys(tio, yield, cnode.key, insert_key);
- // Depending on [lteq, gt] select the next_ptr
- RegXS next_ptr;
- RegXS left = getAVLLeftPtr(cnode.pointers);
- RegXS right = getAVLRightPtr(cnode.pointers);
- RegBS bal_l = getLeftBal(cnode.pointers);
- RegBS bal_r = getRightBal(cnode.pointers);
- /*
- size_t rec_left = reconstruct_RegXS(tio, yield, left);
- size_t rec_right = reconstruct_RegXS(tio, yield, right);
- size_t rec_key = reconstruct_RegAS(tio, yield, cnode.key);
- printf("\n\nKey = %ld\n", rec_key);
- printf("rec_left = %ld, rec_right = %ld\n", rec_left, rec_right);
- */
- mpc_select(tio, yield, next_ptr, gt, left, right, AVL_PTR_SIZE);
- /*
- size_t rec_next_ptr = reconstruct_RegXS(tio, yield, next_ptr);
- printf("rec_next_ptr = %ld\n", rec_next_ptr);
- */
- CDPF dpf = tio.cdpf(yield);
- size_t &aes_ops = tio.aes_ops();
- // F_z: Check if this is last node on path
- RegBS F_z = dpf.is_zero(tio, yield, next_ptr, aes_ops);
- RegBS F_i;
- // F_i: If this was last node on path (F_z), and isReal insert.
- mpc_and(tio, yield, F_i, (isReal), F_z);
- isDummy^=F_i;
- auto [bal_upd, F_gp, prev_node, prev_dir] = insert(tio, yield,
- next_ptr, insert_key, A, TTL-1, isDummy, ret);
- /*
- rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
- rec_F_gp = reconstruct_RegBS(tio, yield, F_gp);
- printf("Insert returns: rec_bal_upd = %d, rec_F_gp = %d\n",
- rec_bal_upd, rec_F_gp);
- size_t rec_ptr = reconstruct_RegXS(tio, yield, ptr);
- printf("\nrec_ptr = %ld\n", rec_ptr);
- */
- // Save insertion pointer and direction
- mpc_select(tio, yield, ret->i_node, F_i, ret->i_node, ptr, AVL_PTR_SIZE);
- mpc_select(tio, yield, ret->dir_i, F_i, ret->dir_i, gt);
- // Update balance
- // If we inserted at this level (F_i), bal_upd is set to 1
- mpc_or(tio, yield, bal_upd, bal_upd, F_i);
- auto [new_bal_l, new_bal_r, new_bal_upd, imbalance] = updateBalanceIns(tio, yield, bal_l, bal_r, bal_upd, gt);
- // Store if this insert triggers an imbalance
- ret->imbalance ^= imbalance;
- // Save grandparent pointer
- mpc_select(tio, yield, ret->gp_node, F_gp, ret->gp_node, ptr, AVL_PTR_SIZE);
- mpc_select(tio, yield, ret->dir_gpp, F_gp, ret->dir_gpp, gt);
- // Save parent pointer
- mpc_select(tio, yield, ret->p_node, imbalance, ret->p_node, ptr, AVL_PTR_SIZE);
- mpc_select(tio, yield, ret->dir_pc, imbalance, ret->dir_pc, gt);
- // Save child pointer
- mpc_select(tio, yield, ret->c_node, imbalance, ret->c_node, prev_node, AVL_PTR_SIZE);
- mpc_select(tio, yield, ret->dir_cn, imbalance, ret->dir_cn, prev_dir);
- // Store new_bal_l and new_bal_r for this node
- // but this can be handled in the rotation component in one shot,
- // since insertion rotations always resolve with p,c having 0,0 balance
- setLeftBal(cnode.pointers, new_bal_l);
- setRightBal(cnode.pointers, new_bal_r);
- A[ptr].NODE_POINTERS = cnode.pointers;
- // s0 = shares of 0
- RegBS s0;
- // Update F_gp flag: If there was an imbalance then we set this to store
- // the grandparent node (node in the level above) into the ret_struct
- mpc_select(tio, yield, F_gp, imbalance, s0, imbalance);
- return {new_bal_upd, F_gp, ptr, gt};
- }
- // Insert(root, ptr, key, TTL, isDummy) -> (new_ptr, wptr, wnode, f_p)
- void AVL::insert(MPCTIO &tio, yield_t &yield, const Node &node) {
- bool player0 = tio.player()==0;
- auto A = oram->flat(tio, yield);
- // If there are no items in tree. Make this new item the root.
- if(num_items==0) {
- Node zero;
- A[0] = zero;
- A[1] = node;
- (root).set(1*tio.player());
- num_items++;
- return;
- } else {
- // Insert node into next free slot in the ORAM
- int new_id;
- RegXS insert_address;
- num_items++;
- int TTL = AVL_TTL(num_items);
- bool insertAtEmptyLocation = (numEmptyLocations() > 0);
- if(insertAtEmptyLocation) {
- insert_address = empty_locations.back();
- empty_locations.pop_back();
- A[insert_address] = node;
- } else {
- new_id = num_items;
- A[new_id] = node;
- insert_address.set(new_id * tio.player());
- }
- RegBS isDummy;
- avl_insert_return ret;
- RegAS insert_key = node.key;
- // Recursive insert function
- auto [bal_upd, F_gp, prev_node, prev_dir] = insert(tio, yield, root, insert_key, A, TTL, isDummy, &ret);
- /*
- // Debug code
- bool rec_bal_upd, rec_F_gp, ret_dir_pc, ret_dir_cn;
- rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
- rec_F_gp = reconstruct_RegBS(tio, yield, F_gp);
- ret_dir_pc = reconstruct_RegBS(tio, yield, ret.dir_pc);
- ret_dir_cn = reconstruct_RegBS(tio, yield, ret.dir_cn);
- printf("(Top level) Insert returns: rec_bal_upd = %d, rec_F_gp = %d\n",
- rec_bal_upd, rec_F_gp);
- printf("(Top level) Insert returns: ret.dir_pc = %d, rt.dir_cn = %d\n",
- ret_dir_pc, ret_dir_cn);
- */
- // Perform actual insertion
- RegXS ins_pointers = A[ret.i_node].NODE_POINTERS;
- RegXS left_ptr = getAVLLeftPtr(ins_pointers);
- RegXS right_ptr = getAVLRightPtr(ins_pointers);
- mpc_select(tio, yield, right_ptr, ret.dir_i, right_ptr, insert_address, AVL_PTR_SIZE);
- // ret.dir_i -> !(ret.dir_i)
- if(player0) {
- ret.dir_i^=1;
- }
- mpc_select(tio, yield, left_ptr, ret.dir_i, left_ptr, insert_address, AVL_PTR_SIZE);
- // We never use ret.dir_i again, so don't bother reverting the negation above.
- setAVLLeftPtr(ins_pointers, left_ptr);
- setAVLRightPtr(ins_pointers, right_ptr);
- A[ret.i_node].NODE_POINTERS = ins_pointers;
- // Perform balance procedure
- RegXS gp_pointers = A[ret.gp_node].NODE_POINTERS;
- RegXS parent_pointers = A[ret.p_node].NODE_POINTERS;
- RegXS child_pointers = A[ret.c_node].NODE_POINTERS;
- // n_node (child's next node)
- RegXS child_left = getAVLLeftPtr(child_pointers);
- RegXS child_right = getAVLRightPtr(child_pointers);
- RegXS n_node;
- mpc_select(tio, yield, n_node, ret.dir_cn, n_node, child_right, AVL_PTR_SIZE);
- // dir_cn -> !(dir_cn); to handle left case
- if(player0) {
- ret.dir_cn^=1;
- }
- mpc_select(tio, yield, n_node, ret.dir_cn, n_node, child_left, AVL_PTR_SIZE);
- // Undo dir_cn negation
- if(player0) {
- ret.dir_cn^=1;
- }
- RegXS n_pointers = A[n_node].NODE_POINTERS;
- // F_dr = (dir_pc != dir_cn) : i.e., double rotation case if
- // (parent->child) and (child->new_node) are not in the same direction
- RegBS F_dr = (ret.dir_pc) ^ (ret.dir_cn);
- /* Flags: F_cn_rot = child->node rotate
- F_ur = update root.
- In case of an imbalance we have to always rotate p->c link. (L or R case)
- In case of an imbalance where p->c and c->n are in different directions, we have
- to perform a double rotation (LR or RL case). In such cases, first rotate
- c->n link, and then p->c link
- (Note: in the second rotation c is actually n, since the the first rotation
- swaps their positions)
- */
- RegBS F_cn_rot, F_ur;
- mpc_and(tio, yield, F_ur, F_gp, ret.imbalance);
- mpc_and(tio, yield, F_cn_rot, ret.imbalance, F_dr);
- RegBS s0;
- // Get the n children information for 2nd rotate fix before rotations happen.
- RegBS n_bal_l, n_bal_r;
- RegXS n_l = getAVLLeftPtr(n_pointers);
- RegXS n_r = getAVLRightPtr(n_pointers);
- n_bal_l = getLeftBal(n_pointers);
- n_bal_r = getRightBal(n_pointers);
- // First rotation: c->n link
- rotate(tio, yield, parent_pointers, ret.c_node, child_pointers, n_node,
- n_pointers, ret.dir_pc, ret.dir_cn, F_cn_rot, s0);
- // If F_cn_rot, i.e. we did first rotation. Then c and n need to swap before the second rotate.
- RegXS new_child_pointers, new_child;
- mpc_select(tio, yield, new_child_pointers, F_cn_rot, child_pointers, n_pointers);
- mpc_select(tio, yield, new_child, F_cn_rot, ret.c_node, n_node, AVL_PTR_SIZE);
- // Second rotation: p->c link
- rotate(tio, yield, gp_pointers, ret.p_node, parent_pointers, new_child,
- new_child_pointers, ret.dir_gpp, ret.dir_pc, ret.imbalance, F_gp);
- // Set parent and child balances to 0 if there was an imbalance.
- // parent balances are already set to 0 from updateBalanceIns
- RegBS temp_bal, p_bal_l, p_bal_r, p_bal_ndpc;
- RegBS c_bal_l, c_bal_r, c_bal_dpc, n_bal_dpc, n_bal_ndpc;
- p_bal_l = getLeftBal(parent_pointers);
- p_bal_r = getRightBal(parent_pointers);
- mpc_select(tio, yield, child_pointers, F_cn_rot, new_child_pointers, child_pointers);
- mpc_select(tio, yield, n_pointers, F_cn_rot, n_pointers, new_child_pointers);
- c_bal_l = getLeftBal(child_pointers);
- c_bal_r = getRightBal(child_pointers);
- mpc_select(tio, yield, c_bal_l, ret.imbalance, c_bal_l, s0);
- mpc_select(tio, yield, c_bal_r, ret.imbalance, c_bal_r, s0);
- /* In the double rotation case: balance of c and p have a tweak
- p_bal_ndpc <- !(n_bal_ndpc)
- c_bal_dpc <- !(n_bal_dpc) */
- CDPF cdpf = tio.cdpf(yield);
- size_t &aes_ops = tio.aes_ops();
- RegBS n_l0 = cdpf.is_zero(tio, yield, n_l, aes_ops);
- RegBS n_r0 = cdpf.is_zero(tio, yield, n_r, aes_ops);
- RegBS p_c_update, n_has_children;
- // n_has_children = !(n_l0 & n_r0)
- mpc_and(tio, yield, n_has_children, n_l0, n_r0);
- if(player0) {
- n_has_children^=1;
- }
- /*
- bool rec_n_l0, rec_n_r0, rec_n_hc;
- rec_n_l0 = reconstruct_RegBS(tio, yield, n_l0);
- rec_n_r0 = reconstruct_RegBS(tio, yield, n_r0);
- rec_n_hc = reconstruct_RegBS(tio, yield, n_has_children);
- printf("n_l0 = %d, n_r0 = %d, n_has_children = %d\n", rec_n_l0, rec_n_r0, rec_n_hc);
- */
- mpc_and(tio, yield, p_c_update, F_cn_rot, n_has_children);
- mpc_select(tio, yield, n_bal_ndpc, ret.dir_pc, n_bal_r, n_bal_l);
- mpc_select(tio, yield, n_bal_dpc, ret.dir_pc, n_bal_l, n_bal_r);
- mpc_select(tio, yield, p_bal_ndpc, ret.dir_pc, p_bal_r, p_bal_l);
- // !n_bal_ndpc, !n_bal_dpc
- if(player0) {
- n_bal_ndpc^=1;
- n_bal_dpc^=1;
- }
- mpc_select(tio, yield, p_bal_ndpc, p_c_update, p_bal_ndpc, n_bal_ndpc);
- mpc_select(tio, yield, c_bal_dpc, p_c_update, c_bal_dpc, n_bal_dpc);
- mpc_select(tio, yield, p_bal_r, ret.dir_pc, p_bal_ndpc, p_bal_r);
- mpc_select(tio, yield, p_bal_l, ret.dir_pc, p_bal_l, p_bal_ndpc);
- mpc_select(tio, yield, c_bal_r, ret.dir_pc, c_bal_r, c_bal_dpc);
- mpc_select(tio, yield, c_bal_l, ret.dir_pc, c_bal_dpc, c_bal_l);
- setLeftBal(parent_pointers, p_bal_l);
- setRightBal(parent_pointers, p_bal_r);
- setLeftBal(child_pointers, c_bal_l);
- setRightBal(child_pointers, c_bal_r);
- // Write back update pointers and balances into gp, p, c, and n
- A[ret.c_node].NODE_POINTERS = child_pointers;
- A[ret.p_node].NODE_POINTERS = parent_pointers;
- A[ret.gp_node].NODE_POINTERS = gp_pointers;
- A[n_node].NODE_POINTERS = n_pointers;
- // Handle root pointer switch (if F_gp is true in the return from insert())
- // If F_gp and we did a double rotation: root <-- new node
- // If F_gp and we did a single rotation: root <-- child node
- mpc_select(tio, yield, root, F_ur, root, ret.c_node, AVL_PTR_SIZE);
- mpc_and(tio, yield, F_ur, F_gp, F_dr);
- mpc_select(tio, yield, root, F_ur, root, n_node, AVL_PTR_SIZE);
- }
- }
- bool AVL::lookup(MPCTIO &tio, yield_t &yield, RegXS ptr, RegAS key, Duoram<Node>::Flat &A,
- int TTL, RegBS isDummy, Node *ret_node) {
- if(TTL==0) {
- // Reconstruct and return isDummy
- // If we found the key, then isDummy will be true
- bool found = reconstruct_RegBS(tio, yield, isDummy);
- return found;
- }
- RegBS isNotDummy = isDummy ^ (tio.player());
- Node cnode = A[ptr];
- // Compare key
- CDPF cdpf = tio.cdpf(yield);
- auto [lt, eq, gt] = cdpf.compare(tio, yield, key - cnode.key, tio.aes_ops());
- // Depending on [lteq, gt] select the next ptr/index as
- // upper 32 bits of cnode.pointers if lteq
- // lower 32 bits of cnode.pointers if gt
- RegXS left = getAVLLeftPtr(cnode.pointers);
- RegXS right = getAVLRightPtr(cnode.pointers);
- RegXS next_ptr;
- mpc_select(tio, yield, next_ptr, gt, left, right, 32);
- RegBS F_found;
- // If we haven't found the key yet, and the lookup matches the current node key,
- // then we found the node to return
- mpc_and(tio, yield, F_found, isNotDummy, eq);
- mpc_select(tio, yield, ret_node->key, eq, ret_node->key, cnode.key);
- mpc_select(tio, yield, ret_node->value, eq, ret_node->value, cnode.value);
- isDummy^=F_found;
- bool found = lookup(tio, yield, next_ptr, key, A, TTL-1, isDummy, ret_node);
- return found;
- }
- bool AVL::lookup(MPCTIO &tio, yield_t &yield, RegAS key, Node *ret_node) {
- auto A = oram->flat(tio, yield);
- RegBS isDummy;
- bool found = lookup(tio, yield, root, key, A, num_items, isDummy, ret_node);
- return found;
- }
- std::tuple<bool, RegBS> AVL::del(MPCTIO &tio, yield_t &yield, RegXS ptr, RegAS del_key,
- Duoram<Node>::Flat &A, RegBS af, RegBS fs, int TTL,
- avl_del_return &ret_struct) {
- bool player0 = tio.player()==0;
- if(TTL==0) {
- //Reconstruct and return af
- bool success = reconstruct_RegBS(tio, yield, af);
- RegBS zero;
- //printf("Reconstructed flag = %d\n", success);
- if(player0)
- ret_struct.F_r^=1;
- return {success, zero};
- } else {
- Node node = A[ptr];
- // Compare key
- CDPF cdpf = tio.cdpf(yield);
- auto [lt, eq, gt] = cdpf.compare(tio, yield, del_key - node.key, tio.aes_ops());
- // c is the direction bit for next_ptr
- // (c=0: go left or c=1: go right)
- RegBS c = gt;
- // lf = local found. We found the key to delete in this level.
- RegBS lf = eq;
- // Select the next ptr
- RegXS left = getAVLLeftPtr(node.pointers);
- RegXS right = getAVLRightPtr(node.pointers);
- size_t &aes_ops = tio.aes_ops();
- // Check if left and right children are 0, and compute F_0, F_1, F_2
- RegBS l0 = cdpf.is_zero(tio, yield, left, aes_ops);
- RegBS r0 = cdpf.is_zero(tio, yield, right, aes_ops);
- RegBS F_0, F_1, F_2;
- // F_0 = l0 & r0
- mpc_and(tio, yield, F_0, l0, r0);
- // F_1 = l0 \xor r0
- F_1 = l0 ^ r0;
- // F_2 = !(F_0 + F_1) (Only 1 of F_0, F_1, and F_2 can be true)
- F_2 = F_0 ^ F_1;
- if(player0)
- F_2^=1;
- // We set next ptr based on c, but we need to handle three
- // edge cases where we do not pick next_ptr by just the comparison result
- RegXS next_ptr, cs_ptr;
- RegBS c_prime;
- // Case 1: found the node here (lf), and node has only one child.
- // Then we iterate down the only child.
- RegBS F_c1, F_c2, F_c3, F_c4;
- // Case 1: lf & F_1
- mpc_and(tio, yield, F_c1, lf, F_1);
- // Set c_prime for Case 1
- mpc_select(tio, yield, c_prime, F_c1, c, l0);
- // s1: shares of 1 bit, s0: shares of 0 bit
- RegBS s1, s0;
- s1.set(tio.player()==1);
- // Case 2: found the node here (lf) and node has both children (F_2)
- // In find successor case, so we find inorder successor for node to be deleted
- // (inorder successor = go right and then find leftmost child.)
- mpc_and(tio, yield, F_c2, lf, F_2);
- mpc_select(tio, yield, c_prime, F_c2, c_prime, s1);
- /*
- // Reconstruct and Debug Block 2
- bool F_c2_rec, s1_rec;
- F_c2_rec = reconstruct_RegBS(tio, yield, F_c2);
- s1_rec = reconstruct_RegBS(tio, yield, s1);
- c_prime_rec = reconstruct_RegBS(tio, yield, c_prime);
- printf("c_prime = %d, F_c2 = %d, s1 = %d\n", c_prime_rec, F_c2_rec, s1_rec);
- */
- // Case 3: finding successor (fs) and node has both children (F_2)
- // Go left.
- mpc_and(tio, yield, F_c3, fs, F_2);
- mpc_select(tio, yield, c_prime, F_c3, c_prime, s0);
- // Case 4: finding successor (fs) and node has no more left children (l0)
- // This is the successor node then.
- // Go right (since no more left)
- mpc_and(tio, yield, F_c4, fs, l0);
- mpc_select(tio, yield, c_prime, F_c4, c_prime, l0);
- // Set next_ptr
- mpc_select(tio, yield, next_ptr, c_prime, left, right, AVL_PTR_SIZE);
- // cs_ptr: child's sibling pointer
- mpc_select(tio, yield, cs_ptr, c_prime, right, left, AVL_PTR_SIZE);
- RegBS af_prime, fs_prime;
- mpc_or(tio, yield, af_prime, af, lf);
- // If in Case 2, set fs. We are now finding successor
- mpc_or(tio, yield, fs_prime, fs, F_c2);
- // If in Case 4. Successor found here already. Toggle fs off
- fs_prime=fs_prime^F_c4;
- TTL-=1;
- auto [key_found, bal_upd] = del(tio, yield, next_ptr, del_key, A, af_prime, fs_prime, TTL, ret_struct);
- // If we didn't find the key, we can end here.
- if(!key_found) {
- return {0, s0};
- }
- /* F_rs: Flag for updating the correct child pointer of this node
- This happens if F_r is set in ret_struct. F_r indicates if we need
- to update a child pointer at this level by skipping the current
- child in the direction of traversal. We do this in two cases:
- i) F_d & (!F_2) : If we delete here, and this node does not have
- 2 children (;i.e., we are not in the finding successor case)
- ii) F_ns: Found the successor (no more left children while
- traversing to find successor)
- In cases i and ii we skip the next node, and make the current node
- point to the node after the next node.
- iii) We did rotation(s) at the lower level, changing the child in
- that position. So we update it to the correct node in that
- position now.
- Whether skip happens or just update happens is handled by how
- ret_struct.ret_ptr is set.
- */
- RegBS F_rr; // Flag to resolve F_r by updating correct child ptr
- mpc_and(tio, yield, F_rr, c_prime, ret_struct.F_r);
- mpc_select(tio, yield, right, F_rr, right, ret_struct.ret_ptr);
- if(player0)
- c_prime^=1;
- mpc_and(tio, yield, F_rr, c_prime, ret_struct.F_r);
- mpc_select(tio, yield, left, F_rr, left, ret_struct.ret_ptr);
- if(player0)
- c_prime^=1;
- setAVLLeftPtr(node.pointers, left);
- setAVLRightPtr(node.pointers, right);
- // Delay storing pointers back until balance updates are done as well.
- // Since we resolved the F_r flag returned, we set it back to 0.
- ret_struct.F_r = s0;
- RegBS p_bal_l, p_bal_r;
- p_bal_l = getLeftBal(node.pointers);
- p_bal_r = getRightBal(node.pointers);
- auto [new_p_bal_l, new_p_bal_r, new_bal_upd, imb] =
- updateBalanceDel(tio, yield, p_bal_l, p_bal_r, bal_upd, c_prime);
-
- /*
- // Reconstruct and Debug Block
- bool rec_new_bal_upd, rec_imb, rec_bal_upd;
- size_t rec_ckey;
- rec_new_bal_upd = reconstruct_RegBS(tio, yield, new_bal_upd);
- rec_imb = reconstruct_RegBS(tio, yield, imb);
- rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
- rec_ckey = reconstruct_RegAS(tio, yield, node.key);
- bool rec_F_c1, rec_F_c2, rec_F_c3, rec_F_c4;
- rec_F_c1 = reconstruct_RegBS(tio, yield, F_c1);
- rec_F_c2 = reconstruct_RegBS(tio, yield, F_c2);
- rec_F_c3 = reconstruct_RegBS(tio, yield, F_c3);
- rec_F_c4 = reconstruct_RegBS(tio, yield, F_c4);
- printf("Current Key = %lu\n", rec_ckey);
- size_t rec_p_left_0, rec_p_right_0;
- rec_p_left_0 = reconstruct_RegXS(tio, yield, getAVLLeftPtr(node.pointers));
- rec_p_right_0 = reconstruct_RegXS(tio, yield, getAVLRightPtr(node.pointers));
- printf("parent_ptrs (after read): left = %lu, right = %lu\n", rec_p_left_0, rec_p_right_0);
- printf("F_c1 = %d, F_c2 = %d, F_c3 = %d, F_c4 = %d\n", rec_F_c1, rec_F_c2, rec_F_c3, rec_F_c4);
- printf("bal_upd = %d, new_bal_upd = %d, imb= %d\n", rec_bal_upd, rec_new_bal_upd, rec_imb);
- */
- // F_ri: subflag for F_r. F_ri = returned flag set to 1 from imbalance fix.
- RegBS F_ri;
- // Perform rotations if imbalance (else dummy rotations)
- /*
- For capturing both the symmetric L and R cases of rotations, we'll capture directions with
- dpc = dir_pc = direction from parent to child, and
- ndpc = not(dir_pc)
- When we travelled down the stack, we went from p->c. But in deletions to handle any imbalance
- we look at c's sibling cs (child's sibling). And the rotation is between p and cs if there
- was an imbalance at p, and perhaps even cs and it's child (the child in dir_pc, as that's the
- only case that results in a double rotation when deleting).
- In case of an imbalance we have to always rotate p->cs link. (L or R case)
- If cs.bal_(dir_pc), then we have a double rotation (LR or RL) case.
- In such cases, first rotate cs->gcs link, and then p->cs link. gcs = grandchild on cs path
- Layout: In the R (or LR) case:
- p
- / \
- cs c
- / \
- a gcs
- / \
- x y
- - One of x or y must exist for it to be an LR case,
- since then cs.bal_(dir_pc) = cs.bal_r = 1
- Layout: In the L (or RL) case:
- p
- / \
- c cs
- / \
- gcs a
- / \
- x y
- - One of x or y must exist for it to be an RL case,
- since then cs.bal_(dir_pc) = cs.bal_l = 1
- (Note: if double rotation case, in the second rotation cs is actually gcs,
- since the the first rotation swaps their positions)
- */
- Node cs_node = A[cs_ptr];
- //dirpc = dir_pc = dpc = c_prime
- RegBS cs_bal_l, cs_bal_r, cs_bal_dpc, cs_bal_ndpc, F_dr, not_c_prime;
- RegXS gcs_ptr, cs_left, cs_right, cs_dpc, cs_ndpc, null;
- // child's sibling node's balances in dir_pc (dpc), and not_dir_pc (ndpc)
- cs_bal_l = getLeftBal(cs_node.pointers);
- cs_bal_r = getRightBal(cs_node.pointers);
- cs_left = getAVLLeftPtr(cs_node.pointers);
- cs_right = getAVLRightPtr(cs_node.pointers);
- mpc_select(tio, yield, cs_bal_dpc, c_prime, cs_bal_l, cs_bal_r);
- mpc_select(tio, yield, cs_bal_ndpc, c_prime, cs_bal_r, cs_bal_l);
- mpc_select(tio, yield, cs_dpc, c_prime, cs_left, cs_right);
- mpc_select(tio, yield, cs_ndpc, c_prime, cs_right, cs_left);
- // We need to double rotate (LR or RL case) if cs_bal_dpc is 1
- mpc_and(tio, yield, F_dr, imb, cs_bal_dpc);
- mpc_select(tio, yield, gcs_ptr, cs_bal_dpc, cs_ndpc, cs_dpc, AVL_PTR_SIZE);
- Node gcs_node = A[gcs_ptr];
- not_c_prime = c_prime;
- if(player0) {
- not_c_prime^=1;
- }
- // First rotation: cs->gcs link
- rotate(tio, yield, node.pointers, cs_ptr, cs_node.pointers, gcs_ptr,
- gcs_node.pointers, not_c_prime, c_prime, F_dr, s0);
- // If F_dr, we did first rotation. Then cs and gcs need to swap before the second rotate.
- RegXS new_cs_pointers, new_cs, new_ptr;
- mpc_select(tio, yield, new_cs_pointers, F_dr, cs_node.pointers, gcs_node.pointers);
- mpc_select(tio, yield, new_cs, F_dr, cs_ptr, gcs_ptr, AVL_PTR_SIZE);
- // Second rotation: p->cs link
- // Since we don't have access to gp node here we just send a null and s0
- // for gp_pointers and dir_gpp. Instead this pointer fix is handled by F_r
- // and ret_struct.ret_ptr.
- rotate(tio, yield, null, ptr, node.pointers, new_cs,
- new_cs_pointers, s0, not_c_prime, imb, s1);
- /*
- size_t rec_p_left_1, rec_p_right_1;
- bool rec_flag_imb, rec_flag_dr;
- rec_flag_imb = reconstruct_RegBS(tio, yield, imb);
- rec_flag_dr = reconstruct_RegBS(tio, yield, F_dr);
- rec_p_left_1 = reconstruct_RegXS(tio, yield, getAVLLeftPtr(node.pointers));
- rec_p_right_1 = reconstruct_RegXS(tio, yield, getAVLRightPtr(node.pointers));
- printf("flag_imb = %d, flag_dr = %d\n", rec_flag_imb, rec_flag_dr);
- printf("parent_ptrs (after rotations): left = %lu, right = %lu\n", rec_p_left_1, rec_p_right_1);
- */
- // If imb (we do some rotation), then update F_r, and ret_ptr, to
- // fix the gp->p link (The F_r clauses later, and this are mutually
- // exclusive events. They will never trigger together.)
- mpc_select(tio, yield, new_ptr, F_dr, cs_ptr, gcs_ptr);
- mpc_select(tio, yield, F_ri, imb, s0, s1);
- mpc_select(tio, yield, ret_struct.ret_ptr, imb, ret_struct.ret_ptr, new_ptr);
- // Write back new_cs_pointers correctly to (cs_node/gcs_node).pointers
- // and then balance the nodes
- mpc_select(tio, yield, cs_node.pointers, F_dr, new_cs_pointers, cs_node.pointers);
- mpc_select(tio, yield, gcs_node.pointers, F_dr, gcs_node.pointers, new_cs_pointers);
- /*
- Update balances based on imbalance and type of rotations that happen.
- In the case of an imbalance, updateBalance() sets bal_l and bal_r of p to 0.
- */
- RegBS IC1, IC2, IC3; // Imbalance Case 1, 2 or 3
- // IC1 = Single rotation (L/R). L/R = dpc
- mpc_and(tio, yield, IC1, imb, cs_bal_ndpc);
- // IC3 = Double rotation (LR/RL). 1st rotate direction = ndpc, 2nd direction = dpc
- mpc_and(tio, yield, IC3, imb, cs_bal_dpc);
- // IC2 = Single rotation (L/R).
- IC2 = IC1 ^ IC3;
- if(player0) {
- IC2^=1;
- }
- mpc_and(tio, yield, IC2, imb, IC2);
- /*
- bool rec_IC1, rec_IC2, rec_IC3;
- rec_IC1 = reconstruct_RegBS(tio, yield, IC1);
- rec_IC2 = reconstruct_RegBS(tio, yield, IC2);
- rec_IC3 = reconstruct_RegBS(tio, yield, IC3);
- printf("rec_IC1 = %d, rec_IC2 = %d, rec_IC3 = %d\n", rec_IC1, rec_IC2, rec_IC3);
- */
- // IC1, IC2, IC3: CS.bal = 0 0
- mpc_select(tio, yield, cs_bal_dpc, imb, cs_bal_dpc, s0);
- mpc_select(tio, yield, cs_bal_ndpc, imb, cs_bal_ndpc, s0);
- mpc_select(tio, yield, cs_bal_r, c_prime, cs_bal_ndpc, cs_bal_dpc);
- mpc_select(tio, yield, cs_bal_l, c_prime, cs_bal_dpc, cs_bal_ndpc);
- // IC2: p.bal_ndpc = 1, cs.bal_dpc = 1
- // (IC2 & not_c_prime)
- cs_bal_dpc^=IC2;
- RegBS p_bal_dpc, p_bal_ndpc;
- mpc_select(tio, yield, p_bal_ndpc, c_prime, new_p_bal_r, new_p_bal_l);
- p_bal_ndpc^=IC2;
- RegBS IC2_ndpc_l, IC2_ndpc_r, IC2_dpc_l, IC2_dpc_r;
- mpc_and(tio, yield, IC2_ndpc_l, IC2, c_prime);
- mpc_and(tio, yield, IC2_ndpc_r, IC2, not_c_prime);
- mpc_and(tio, yield, IC2_dpc_l, IC2, not_c_prime);
- mpc_and(tio, yield, IC2_dpc_r, IC2, c_prime);
- mpc_select(tio, yield, new_p_bal_l, IC2_ndpc_l, new_p_bal_l, p_bal_ndpc);
- mpc_select(tio, yield, new_p_bal_r, IC2_ndpc_r, new_p_bal_r, p_bal_ndpc);
- mpc_select(tio, yield, cs_bal_l, IC2_dpc_l, cs_bal_l, cs_bal_dpc);
- mpc_select(tio, yield, cs_bal_r, IC2_dpc_r, cs_bal_r, cs_bal_dpc);
- // In the IC2 case bal_upd = 0 (The rotation doesn't end up
- // decreasing height of this subtree.
- mpc_select(tio, yield, bal_upd, IC2, bal_upd, s0);
- // IC3:
- // To set balance in this case we need to know if gcs.dpc child exists
- // and similarly if gcs.ndpc child exitst.
- // if(gcs.ndpc child exists): cs.bal_ndpc = 1
- // if(gcs.dpc child exists): p.bal_dpc = 1
- RegBS gcs_dpc_exists, gcs_ndpc_exists;
- RegXS gcs_l = getAVLLeftPtr(gcs_node.pointers);
- RegXS gcs_r = getAVLRightPtr(gcs_node.pointers);
- RegBS gcs_bal_l = getLeftBal(gcs_node.pointers);
- RegBS gcs_bal_r = getRightBal(gcs_node.pointers);
- RegXS gcs_dpc, gcs_ndpc;
- mpc_select(tio, yield, gcs_dpc, c_prime, gcs_l, gcs_r);
- mpc_select(tio, yield, gcs_ndpc, not_c_prime, gcs_l, gcs_r);
- gcs_dpc_exists = cdpf.is_zero(tio, yield, gcs_dpc, aes_ops);
- gcs_ndpc_exists = cdpf.is_zero(tio, yield, gcs_ndpc, aes_ops);
- cs_bal_ndpc^=IC3;
- RegBS IC3_ndpc_l, IC3_ndpc_r, IC3_dpc_l, IC3_dpc_r;
- mpc_and(tio, yield, IC3_ndpc_l, IC3, c_prime);
- mpc_and(tio, yield, IC3_ndpc_r, IC3, not_c_prime);
- mpc_and(tio, yield, IC3_dpc_l, IC3, not_c_prime);
- mpc_and(tio, yield, IC3_dpc_r, IC3, c_prime);
- RegBS f0, f1, f2, f3;
- mpc_and(tio, yield, f0, IC3_dpc_l, gcs_dpc_exists);
- mpc_and(tio, yield, f1, IC3_dpc_r, gcs_dpc_exists);
- mpc_and(tio, yield, f2, IC3_ndpc_l, gcs_ndpc_exists);
- mpc_and(tio, yield, f3, IC3_ndpc_r, gcs_ndpc_exists);
- mpc_select(tio, yield, new_p_bal_l, f0, new_p_bal_l, IC3);
- mpc_select(tio, yield, new_p_bal_r, f1, new_p_bal_r, IC3);
- mpc_select(tio, yield, cs_bal_l, f2, cs_bal_l, IC3);
- mpc_select(tio, yield, cs_bal_r, f3, cs_bal_r, IC3);
- // In IC3 gcs.bal = 0 0
- mpc_select(tio, yield, gcs_bal_l, IC3, gcs_bal_l, s0);
- mpc_select(tio, yield, gcs_bal_r, IC3, gcs_bal_r, s0);
- // Write back <cs_bal_dpc, cs_bal_ndpc> and <gcs_bal_l, gcs_bal_r>
- setLeftBal(gcs_node.pointers, gcs_bal_l);
- setRightBal(gcs_node.pointers, gcs_bal_r);
- setLeftBal(cs_node.pointers, cs_bal_l);
- setRightBal(cs_node.pointers, cs_bal_r);
- A[cs_ptr].NODE_POINTERS = cs_node.pointers;
- A[gcs_ptr].NODE_POINTERS = gcs_node.pointers;
- // Write back updated pointers correctly accounting for rotations
- setLeftBal(node.pointers, new_p_bal_l);
- setRightBal(node.pointers, new_p_bal_r);
- A[ptr].NODE_POINTERS = node.pointers;
-
- // Update the return structure
- // F_dh = Delete Here flag,
- // F_sf = successor found (no more left children while trying to find successor)
- // F_rs = subflag for F_r. F_rs = flag for F_r set to 1 from handling a skip fix
- // (deleting a node with single child, or found successor cases)
- RegBS F_dh, F_sf, F_rs;
- mpc_or(tio, yield, ret_struct.F_ss, ret_struct.F_ss, F_c2);
- if(player0)
- af^=1;
- mpc_and(tio, yield, F_dh, lf, af);
- mpc_select(tio, yield, ret_struct.N_d, F_dh, ret_struct.N_d, ptr);
- // F_sf = Successor found = F_c4 = Finding successor & no more left child
- F_sf = F_c4;
- if(player0)
- F_2^=1;
- // If we have to i) delete here, and it doesn't have two children
- // we have to update child pointer in parent with the returned pointer
- mpc_and(tio, yield, F_rs, F_dh, F_2);
- // ii) if we found successor here
- mpc_or(tio, yield, F_rs, F_rs, F_sf);
- mpc_select(tio, yield, ret_struct.N_s, F_sf, ret_struct.N_s, ptr);
- // F_rs and F_ri will never trigger together. So the line below
- // set ret_ptr to the correct pointer to handle either case
- // If neither F_rs nor F_ri, we set the ret_ptr to current ptr.
- RegBS F_nr;
- mpc_or(tio, yield, F_nr, F_rs, F_ri);
- // F_nr = F_rs || F_ri
- ret_struct.F_r = F_nr;
- /*
- bool rec_ret_F_r, rec_F_rs, rec_F_ri;
- rec_ret_F_r = reconstruct_RegBS(tio, yield, ret_struct.F_r);
- rec_F_rs = reconstruct_RegBS(tio, yield, F_rs);
- rec_F_ri = reconstruct_RegBS(tio, yield, F_ri);
- printf("rec_ret_F_r = %d, rec_F_rs = %d, rec_F_ri = %d\n", rec_ret_F_r, rec_F_rs, rec_F_ri);
- */
- if(player0) {
- F_nr^=1;
- }
- // F_nr = !(F_rs || F_ri)
- mpc_select(tio, yield, ret_struct.ret_ptr, F_nr, ret_struct.ret_ptr, ptr);
- // If F_rs, we skipped a node, so update bal_upd to 1
- mpc_select(tio, yield, bal_upd, F_rs, bal_upd, s1);
- /*
- rec_F_rs = reconstruct_RegBS(tio, yield, F_rs);
- bool rec_bal_upd_set = reconstruct_RegBS(tio, yield, bal_upd);
- printf("after bal_upd select from rec_F_rs = %d, rec_bal_upd = %d\n",
- rec_F_rs, rec_bal_upd_set);
- */
- // Swap deletion node with successor node done outside of recursive traversal.
- return {key_found, bal_upd};
- }
- }
- bool AVL::del(MPCTIO &tio, yield_t &yield, RegAS del_key) {
- if(num_items==0)
- return 0;
- auto A = oram->flat(tio, yield);
- if(num_items==1) {
- //Delete root
- Node zero;
- empty_locations.emplace_back(root);
- A[root] = zero;
- num_items--;
- return 1;
- } else {
- int TTL = AVL_TTL(num_items);
- // Flags for already found (af) item to delete and find successor (fs)
- // if this deletion requires a successor swap
- RegBS af, fs;
- avl_del_return ret_struct;
- auto [success, bal_upd] = del(tio, yield, root, del_key, A, af, fs, TTL, ret_struct);
- printf ("Success = %d\n", success);
- if(!success){
- return 0;
- }
- else{
- num_items--;
-
- printf("In delete's swap portion\n");
- Node rec_del_node = A.reconstruct(A[ret_struct.N_d]);
- Node rec_suc_node = A.reconstruct(A[ret_struct.N_s]);
- printf("del_node key = %ld, suc_node key = %ld\n",
- rec_del_node.key.ashare, rec_suc_node.key.ashare);
- printf("flag_s = %d\n", ret_struct.F_ss.bshare);
-
- Node del_node = A[ret_struct.N_d];
- Node suc_node = A[ret_struct.N_s];
- RegAS zero_as; RegXS zero_xs;
- // Update root if needed
- mpc_select(tio, yield, root, ret_struct.F_r, root, ret_struct.ret_ptr);
-
- bool rec_F_ss = reconstruct_RegBS(tio, yield, ret_struct.F_ss);
- size_t rec_del_key = reconstruct_RegAS(tio, yield, del_node.key);
- size_t rec_suc_key = reconstruct_RegAS(tio, yield, suc_node.key);
- printf("rec_F_ss = %d, del_node.key = %lu, suc_nod.key = %lu\n",
- rec_F_ss, rec_del_key, rec_suc_key);
-
- mpc_select(tio, yield, del_node.key, ret_struct.F_ss, del_node.key, suc_node.key);
- mpc_select(tio, yield, del_node.value, ret_struct.F_ss, del_node.value, suc_node.value);
- A[ret_struct.N_d].NODE_KEY = del_node.key;
- A[ret_struct.N_d].NODE_VALUE = del_node.value;
- A[ret_struct.N_s].NODE_KEY = zero_as;
- A[ret_struct.N_s].NODE_VALUE = zero_xs;
- RegXS empty_loc;
- mpc_select(tio, yield, empty_loc, ret_struct.F_ss, ret_struct.N_d, ret_struct.N_s);
- //Add deleted (empty) location into the empty_locations vector for reuse in next insert()
- empty_locations.emplace_back(empty_loc);
- }
- return 1;
- }
- }
- // Now we use the AVL class in various ways. This function is called by
- // online.cpp.
- void avl(MPCIO &mpcio,
- const PRACOptions &opts, char **args)
- {
- nbits_t depth=4;
- if (*args) {
- depth = atoi(*args);
- ++args;
- }
- size_t items = (size_t(1)<<depth)-1;
- if (*args) {
- items = atoi(*args);
- ++args;
- }
- MPCTIO tio(mpcio, 0, opts.num_threads);
- run_coroutines(tio, [&tio, depth, items] (yield_t &yield) {
- size_t size = size_t(1)<<depth;
- AVL tree(tio.player(), size);
- // Insert a few elements
- int insert_array[] = {10, 10, 13, 11, 14, 8, 15, 20, 17, 19, 7, 12};
- size_t insert_array_size = 11;
- //int insert_array[] = {10, 10, 13, 11, 14, 8, 15, 20, 17, 19, 7, 12};
- //size_t insert_array_size = 11;
- //int insert_array[] = {6, 3, 10, 1, 2};
- //size_t insert_array_size = 4;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- printf("Insert %d\n", insert_array[i]);
- tree.insert(tio, yield, node);
- tree.print_oram(tio, yield);
- tree.pretty_print(tio, yield);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(10 * tio.player());
- printf("Delete 10\n");
- tree.del(tio, yield, del_key);
- tree.print_oram(tio, yield);
- tree.pretty_print(tio, yield);
- tree.check_avl(tio, yield);
- del_key.set(14 * tio.player());
- printf("Delete 14\n");
- tree.del(tio, yield, del_key);
- tree.print_oram(tio, yield);
- tree.pretty_print(tio, yield);
- tree.check_avl(tio, yield);
- tree.pretty_print(tio, yield);
- del_key.set(12 * tio.player());
- printf("Delete 12\n");
- tree.del(tio, yield, del_key);
- tree.print_oram(tio, yield);
- tree.pretty_print(tio, yield);
- tree.check_avl(tio, yield);
-
- RegAS lookup_key;
- Node lookup;
- bool success;
- lookup_key.set(8 * tio.player());
- success = tree.lookup(tio, yield, lookup_key, &lookup);
- if(success) {
- printf("Lookup 8 success\n");
- }
- else {
- printf("Lookup 8 failed\n");
- }
- lookup_key.set(12 * tio.player());
- success = tree.lookup(tio, yield, lookup_key, &lookup);
- if(success) {
- printf("Lookup 12 success\n");
- }
- else {
- printf("Lookup 12 failed\n");
- }
- });
- }
- void avl_tests(MPCIO &mpcio,
- const PRACOptions &opts, char **args)
- {
- // Not taking arguments for tests
- nbits_t depth=4;
- size_t items = (size_t(1)<<depth)-1;
- MPCTIO tio(mpcio, 0, opts.num_threads);
- run_coroutines(tio, [&tio, depth, items] (yield_t &yield) {
- size_t size = size_t(1)<<depth;
- bool player0 = tio.player()==0;
- // (T1) : Test 1 : L rotation (root modified)
- /*
- Operation:
- 5 7
- \ / \
- 7 ---> 5 9
- \
- 9
- T1 checks:
- - root is 7
- - 5,7,9 in correct positions
- - 5 and 9 have no children and 0 balances
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {5, 7, 9};
- size_t insert_array_size = 2;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, left_node, right_node;
- size_t left_index, right_index;
- root_node = R[root];
- if((root_node.key).share()!=7) {
- success = false;
- }
- left_index = (getAVLLeftPtr(root_node.pointers)).share();
- right_index = (getAVLRightPtr(root_node.pointers)).share();
- left_node = R[left_index];
- right_node = R[right_index];
- if(left_node.key.share()!=5 || right_node.key.share()!=9) {
- success = false;
- }
- //To check that left and right have no children and 0 balances
- size_t sum = left_node.pointers.share() + right_node.pointers.share();
- if(sum!=0) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T1 : SUCCESS\n");
- } else {
- print_red("T1 : FAIL\n");
- }
- }
- }
- // (T2) : Test 2 : L rotation (root unmodified)
- /*
- Operation:
- 5 5
- / \ / \
- 3 7 3 9
- \ ---> / \
- 9 7 7 12
- \
- 12
- T2 checks:
- - root is 5
- - 3, 7, 9, 12 in expected positions
- - Nodes 3, 7, 12 have 0 balance and no children
- - 5's bal = 0 1
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {5, 3, 7, 9, 12};
- size_t insert_array_size = 4;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n3, n7, n9, n12;
- size_t n3_index, n7_index, n9_index, n12_index;
- root_node = R[root];
- if((root_node.key).share()!=5) {
- success = false;
- }
- n3_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n3 = R[n3_index];
- n9 = R[n9_index];
- n7_index = getAVLLeftPtr(n9.pointers).share();
- n12_index = getAVLRightPtr(n9.pointers).share();
- n7 = R[n7_index];
- n12 = R[n12_index];
- // Node value checks
- if(n3.key.share()!=3 || n9.key.share()!=9) {
- success = false;
- }
- if(n7.key.share()!=7 || n12.key.share()!=12) {
- success = false;
- }
- // Node children and balance checks
- size_t zero = 0;
- zero+=(n3.pointers.share());
- zero+=(n7.pointers.share());
- zero+=(n12.pointers.share());
- zero+=(getLeftBal(root_node.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getRightBal(root_node.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T2 : SUCCESS\n");
- } else {
- print_red("T2 : FAIL\n");
- }
- }
- }
- // (T3) : Test 3 : R rotation (root modified)
- /*
- Operation:
- 9 7
- / / \
- 7 ---> 5 9
- /
- 5
- T3 checks:
- - root is 7
- - 5,7,9 in correct positions
- - 5 and 9 have no children
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 7, 5};
- size_t insert_array_size = 2;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, left_node, right_node;
- size_t left_index, right_index;
- root_node = R[root];
- if((root_node.key).share()!=7) {
- success = false;
- }
- left_index = (getAVLLeftPtr(root_node.pointers)).share();
- right_index = (getAVLRightPtr(root_node.pointers)).share();
- left_node = R[left_index];
- right_node = R[right_index];
- if(left_node.key.share()!=5 || right_node.key.share()!=9) {
- success = false;
- }
- //To check that left and right have no children and 0 balances
- size_t sum = left_node.pointers.share() + right_node.pointers.share();
- if(sum!=0) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T3 : SUCCESS\n");
- } else{
- print_red("T3 : FAIL\n");
- }
- }
- }
- // (T4) : Test 4 : R rotation (root unmodified)
- /*
- Operation:
- 9 9
- / \ / \
- 7 12 5 12
- / ---> / \
- 5 7 3 7
- /
- 3
- T4 checks:
- - root is 9
- - 3,5,7,12 are in correct positions
- - Nodes 3,7,12 have 0 balance
- - Nodes 3,7,12 have no children
- - 9's bal = 1 0
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 12, 7, 5, 3};
- size_t insert_array_size = 4;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n3, n7, n5, n12;
- size_t n3_index, n7_index, n5_index, n12_index;
- root_node = R[root];
- if((root_node.key).share()!=9) {
- success = false;
- }
- n5_index = (getAVLLeftPtr(root_node.pointers)).share();
- n12_index = (getAVLRightPtr(root_node.pointers)).share();
- n5 = R[n5_index];
- n12 = R[n12_index];
- n3_index = getAVLLeftPtr(n5.pointers).share();
- n7_index = getAVLRightPtr(n5.pointers).share();
- n7 = R[n7_index];
- n3 = R[n3_index];
- // Node value checks
- if(n12.key.share()!=12 || n5.key.share()!=5) {
- success = false;
- }
- if(n3.key.share()!=3 || n7.key.share()!=7) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n3.pointers.share());
- zero+=(n7.pointers.share());
- zero+=(n12.pointers.share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n5.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getLeftBal(root_node.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T4 : SUCCESS\n");
- } else {
- print_red("T4 : FAIL\n");
- }
- }
- }
- // (T5) : Test 5 : LR rotation (root modified)
- /*
- Operation:
- 9 9 7
- / / / \
- 5 --> 7 --> 5 9
- \ /
- 7 5
- T5 checks:
- - root is 7
- - 9,5,7 are in correct positions
- - Nodes 5,7,9 have 0 balance
- - Nodes 5,9 have no children
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 5, 7};
- size_t insert_array_size = 2;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n9, n5;
- size_t n9_index, n5_index;
- root_node = R[root];
- if((root_node.key).share()!=7) {
- success = false;
- }
- n5_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n5 = R[n5_index];
- n9 = R[n9_index];
- // Node value checks
- if(n9.key.share()!=9 || n5.key.share()!=5) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n5.pointers.share());
- zero+=(n9.pointers.share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n5.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- if(zero!=0) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T5 : SUCCESS\n");
- } else {
- print_red("T5 : FAIL\n");
- }
- }
- }
- // (T6) : Test 6 : LR rotation (root unmodified)
- /*
- Operation:
- 9 9 9
- / \ / \ / \
- 7 12 7 12 5 12
- / ---> / ---> / \
- 3 5 3 7
- \ /
- 5 3
- T6 checks:
- - root is 9
- - 3,5,7,12 are in correct positions
- - Nodes 3,7,12 have 0 balance
- - Nodes 3,7,12 have no children
- - 9's bal = 1 0
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 12, 7, 3, 5};
- size_t insert_array_size = 4;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n3, n7, n5, n12;
- size_t n3_index, n7_index, n5_index, n12_index;
- root_node = R[root];
- if((root_node.key).share()!=9) {
- success = false;
- }
- n5_index = (getAVLLeftPtr(root_node.pointers)).share();
- n12_index = (getAVLRightPtr(root_node.pointers)).share();
- n5 = R[n5_index];
- n12 = R[n12_index];
- n3_index = getAVLLeftPtr(n5.pointers).share();
- n7_index = getAVLRightPtr(n5.pointers).share();
- n7 = R[n7_index];
- n3 = R[n3_index];
- // Node value checks
- if(n5.key.share()!=5 || n12.key.share()!=12) {
- success = false;
- }
- if(n3.key.share()!=3 || n7.key.share()!=7) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n3.pointers.share());
- zero+=(n7.pointers.share());
- zero+=(n12.pointers.share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n5.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getLeftBal(root_node.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T6 : SUCCESS\n");
- } else {
- print_red("T6 : FAIL\n");
- }
- }
- }
- // (T7) : Test 7 : RL rotation (root modified)
- /*
- Operation:
- 5 5 7
- \ \ / \
- 9 --> 7 --> 5 9
- / \
- 7 9
- T7 checks:
- - root is 7
- - 9,5,7 are in correct positions
- - Nodes 5,7,9 have 0 balance
- - Nodes 5,9 have no children
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {5, 9, 7};
- size_t insert_array_size = 2;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n9, n5;
- size_t n9_index, n5_index;
- root_node = R[root];
- if((root_node.key).share()!=7) {
- success = false;
- }
- n5_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n5 = R[n5_index];
- n9 = R[n9_index];
- // Node value checks
- if(n9.key.share()!=9 || n5.key.share()!=5) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n5.pointers.share());
- zero+=(n9.pointers.share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n5.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- if(zero!=0) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T7 : SUCCESS\n");
- } else {
- print_red("T7 : FAIL\n");
- }
- }
- }
- // (T8) : Test 8 : RL rotation (root unmodified)
- /*
- Operation:
- 5 5 5
- / \ / \ / \
- 3 12 3 12 3 9
- / ---> / ---> / \
- 7 9 7 12
- \ /
- 9 7
- T8 checks:
- - root is 5
- - 3,9,7,12 are in correct positions
- - Nodes 3,7,12 have 0 balance
- - Nodes 3,7,12 have no children
- - 5's bal = 0 1
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {5, 3, 12, 7, 9};
- size_t insert_array_size = 4;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n3, n7, n9, n12;
- size_t n3_index, n7_index, n9_index, n12_index;
- root_node = R[root];
- if((root_node.key).share()!=5) {
- success = false;
- }
- n3_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n3 = R[n3_index];
- n9 = R[n9_index];
- n7_index = getAVLLeftPtr(n9.pointers).share();
- n12_index = getAVLRightPtr(n9.pointers).share();
- n7 = R[n7_index];
- n12 = R[n12_index];
- // Node value checks
- if(n3.key.share()!=3 || n9.key.share()!=9) {
- success = false;
- }
- if(n7.key.share()!=7 || n12.key.share()!=12) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n3.pointers.share());
- zero+=(n7.pointers.share());
- zero+=(n12.pointers.share());
- zero+=(getLeftBal(root_node.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getRightBal(root_node.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T8 : SUCCESS\n");
- } else {
- print_red("T8 : FAIL\n");
- }
- }
- }
- // Deletion Tests:
- // (T9) : Test 9 : L rotation (root modified)
- /*
- Operation:
- 5 7
- / \ Del 3 / \
- 3 7 ------> 5 9
- \
- 9
- T9 checks:
- - root is 7
- - 5,7,9 in correct positions
- - 5 and 9 have no children and 0 balances
- - 7 has 0 balances
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {5, 3, 7, 9};
- size_t insert_array_size = 3;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(3 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, left_node, right_node;
- size_t left_index, right_index;
- root_node = R[root];
- if((root_node.key).share()!=7) {
- success = false;
- }
- left_index = (getAVLLeftPtr(root_node.pointers)).share();
- right_index = (getAVLRightPtr(root_node.pointers)).share();
- left_node = R[left_index];
- right_node = R[right_index];
- if(left_node.key.share()!=5 || right_node.key.share()!=9) {
- success = false;
- }
- //To check that left and right have no children and 0 balances
- size_t sum = left_node.pointers.share() + right_node.pointers.share();
- if(sum!=0) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T9 : SUCCESS\n");
- } else {
- print_red("T9 : FAIL\n");
- }
- }
- }
- // (T10) : Test 10 : L rotation (root unmodified)
- /*
- Operation:
- 5 5
- / \ / \
- 3 7 Del 6 3 9
- / / \ ------> / / \
- 1 6 9 1 7 12
- \
- 12
- T10 checks:
- - root is 5
- - 3, 7, 9, 12 in expected positions
- - Nodes 3, 7, 12 have 0 balance and no children
- - 5's bal = 0 1
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {5, 3, 7, 9, 6, 1, 12};
- size_t insert_array_size = 6;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(6 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n1, n3, n7, n9, n12;
- size_t n1_index, n3_index, n7_index, n9_index, n12_index;
- root_node = R[root];
- if((root_node.key).share()!=5) {
- success = false;
- }
- n3_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n3 = R[n3_index];
- n9 = R[n9_index];
- n7_index = getAVLLeftPtr(n9.pointers).share();
- n12_index = getAVLRightPtr(n9.pointers).share();
- n7 = R[n7_index];
- n12 = R[n12_index];
- n1_index = getAVLLeftPtr(n3.pointers).share();
- n1 = R[n1_index];
- // Node value checks
- if(n3.key.share()!=3 || n9.key.share()!=9) {
- success = false;
- }
- if(n7.key.share()!=7 || n12.key.share()!=12 || n1.key.share()!=1) {
- success = false;
- }
- // Node children and balance checks
- size_t zero = 0;
- zero+=(n1.pointers.share());
- zero+=(n7.pointers.share());
- zero+=(n12.pointers.share());
- zero+=(getLeftBal(root_node.pointers).share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- zero+=(getRightBal(n3.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getLeftBal(n3.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T10 : SUCCESS\n");
- } else {
- print_red("T10 : FAIL\n");
- }
- }
- }
- // (T11) : Test 11 : R rotation (root modified)
- /*
- Operation:
- 9 7
- / \ Del 12 / \
- 7 12 -------> 5 9
- /
- 5
- T11 checks:
- - root is 7
- - 5,7,9 in correct positions and balances to 0
- - 5 and 9 have no children
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 7, 12, 5};
- size_t insert_array_size = 3;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(12 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, left_node, right_node;
- size_t left_index, right_index;
- root_node = R[root];
- if((root_node.key).share()!=7) {
- success = false;
- }
- left_index = (getAVLLeftPtr(root_node.pointers)).share();
- right_index = (getAVLRightPtr(root_node.pointers)).share();
- left_node = R[left_index];
- right_node = R[right_index];
- if(left_node.key.share()!=5 || right_node.key.share()!=9) {
- success = false;
- }
- //To check that left and right have no children and 0 balances
- size_t zero = left_node.pointers.share() + right_node.pointers.share();
- zero+=(getLeftBal(left_node.pointers).share());
- zero+=(getRightBal(left_node.pointers).share());
- zero+=(getLeftBal(right_node.pointers).share());
- zero+=(getRightBal(right_node.pointers).share());
- if(zero!=0) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T11 : SUCCESS\n");
- } else{
- print_red("T11 : FAIL\n");
- }
- }
- }
- // (T12) : Test 12 : R rotation (root unmodified)
- /*
- Operation:
- 9 9
- / \ / \
- 7 12 Del 8 5 12
- / \ \ ------> / \ \
- 5 8 15 3 7 15
- /
- 3
- T4 checks:
- - root is 9
- - 3,5,7,12,15 are in correct positions
- - Nodes 3,7,15 have 0 balance
- - Nodes 3,7,15 have no children
- - 9,5 bal = 0 0
- - 12 bal = 0 1
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 12, 7, 5, 8, 15, 3};
- size_t insert_array_size = 6;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(8 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n3, n7, n5, n12, n15;
- size_t n3_index, n7_index, n5_index, n12_index, n15_index;
- root_node = R[root];
- if((root_node.key).share()!=9) {
- success = false;
- }
- n5_index = (getAVLLeftPtr(root_node.pointers)).share();
- n12_index = (getAVLRightPtr(root_node.pointers)).share();
- n5 = R[n5_index];
- n12 = R[n12_index];
- n3_index = getAVLLeftPtr(n5.pointers).share();
- n7_index = getAVLRightPtr(n5.pointers).share();
- n7 = R[n7_index];
- n3 = R[n3_index];
- n15_index = getAVLRightPtr(n12.pointers).share();
- n15 = R[n15_index];
- // Node value checks
- if(n12.key.share()!=12 || n5.key.share()!=5) {
- success = false;
- }
- if(n3.key.share()!=3 || n7.key.share()!=7 || n15.key.share()!=15) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n3.pointers.share());
- zero+=(n7.pointers.share());
- zero+=(n15.pointers.share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(root_node.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n5.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getRightBal(n12.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T12 : SUCCESS\n");
- } else {
- print_red("T12 : FAIL\n");
- }
- }
- }
- // (T13) : Test 13 : LR rotation (root modified)
- /*
- Operation:
- 9 9 7
- / \ Del 12 / / \
- 5 12 -------> 7 --> 5 9
- \ /
- 7 5
- T5 checks:
- - root is 7
- - 9,5,7 are in correct positions
- - Nodes 5,7,9 have 0 balance
- - Nodes 5,9 have no children
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 5, 12, 7};
- size_t insert_array_size = 3;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(12 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n9, n5;
- size_t n9_index, n5_index;
- root_node = R[root];
- if((root_node.key).share()!=7) {
- success = false;
- }
- n5_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n5 = R[n5_index];
- n9 = R[n9_index];
- // Node value checks
- if(n9.key.share()!=9 || n5.key.share()!=5) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n5.pointers.share());
- zero+=(n9.pointers.share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n5.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- if(zero!=0) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T13 : SUCCESS\n");
- } else {
- print_red("T13 : FAIL\n");
- }
- }
- }
- // (T14) : Test 14 : LR rotation (root unmodified)
- /*
- Operation:
- 9 9 9
- / \ / \ / \
- 7 12 Del 8 7 12 5 12
- / \ ------> / ---> / \
- 3 8 5 3 7
- \ /
- 5 3
- T6 checks:
- - root is 9
- - 3,5,7,12 are in correct positions
- - Nodes 3,7,12 have 0 balance
- - Nodes 3,7,12 have no children
- - 9's bal = 1 0
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 12, 7, 3, 5};
- size_t insert_array_size = 4;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(8 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n3, n7, n5, n12;
- size_t n3_index, n7_index, n5_index, n12_index;
- root_node = R[root];
- if((root_node.key).share()!=9) {
- success = false;
- }
- n5_index = (getAVLLeftPtr(root_node.pointers)).share();
- n12_index = (getAVLRightPtr(root_node.pointers)).share();
- n5 = R[n5_index];
- n12 = R[n12_index];
- n3_index = getAVLLeftPtr(n5.pointers).share();
- n7_index = getAVLRightPtr(n5.pointers).share();
- n7 = R[n7_index];
- n3 = R[n3_index];
- // Node value checks
- if(n5.key.share()!=5 || n12.key.share()!=12) {
- success = false;
- }
- if(n3.key.share()!=3 || n7.key.share()!=7) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n3.pointers.share());
- zero+=(n7.pointers.share());
- zero+=(n12.pointers.share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n5.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getLeftBal(root_node.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T14 : SUCCESS\n");
- } else {
- print_red("T14 : FAIL\n");
- }
- }
- }
- // (T15) : Test 15 : RL rotation (root modified)
- /*
- Operation:
- 5 5 7
- / \ Del 3 \ / \
- 3 9 -------> 7 --> 5 9
- / \
- 7 9
- T15 checks:
- - root is 7
- - 9,5,7 are in correct positions
- - Nodes 5,7,9 have 0 balance
- - Nodes 5,9 have no children
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {5, 9, 3, 7};
- size_t insert_array_size = 3;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(3 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n9, n5;
- size_t n9_index, n5_index;
- root_node = R[root];
- if((root_node.key).share()!=7) {
- success = false;
- }
- n5_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n5 = R[n5_index];
- n9 = R[n9_index];
- // Node value checks
- if(n9.key.share()!=9 || n5.key.share()!=5) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n5.pointers.share());
- zero+=(n9.pointers.share());
- zero+=(getRightBal(root_node.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n5.pointers).share());
- zero+=(getLeftBal(n5.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- if(zero!=0) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T15 : SUCCESS\n");
- } else {
- print_red("T15 : FAIL\n");
- }
- }
- }
- // (T16) : Test 16 : RL rotation (root unmodified)
- /*
- Operation:
- 5 5 5
- / \ / \ / \
- 3 12 Del 1 3 12 3 9
- / / ------> / ---> / \
- 1 7 9 7 12
- \ /
- 9 7
- T8 checks:
- - root is 5
- - 3,9,7,12 are in correct positions
- - Nodes 3,7,12 have 0 balance
- - Nodes 3,7,12 have no children
- - 5's bal = 0 1
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {5, 3, 12, 7, 1, 9};
- size_t insert_array_size = 5;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(1 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n3, n7, n9, n12;
- size_t n3_index, n7_index, n9_index, n12_index;
- root_node = R[root];
- if((root_node.key).share()!=5) {
- success = false;
- }
- n3_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n3 = R[n3_index];
- n9 = R[n9_index];
- n7_index = getAVLLeftPtr(n9.pointers).share();
- n12_index = getAVLRightPtr(n9.pointers).share();
- n7 = R[n7_index];
- n12 = R[n12_index];
- // Node value checks
- if(n3.key.share()!=3 || n9.key.share()!=9) {
- success = false;
- }
- if(n7.key.share()!=7 || n12.key.share()!=12) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n3.pointers.share());
- zero+=(n7.pointers.share());
- zero+=(n12.pointers.share());
- zero+=(getLeftBal(root_node.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getRightBal(root_node.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T16 : SUCCESS\n");
- } else {
- print_red("T16 : FAIL\n");
- }
- }
- }
- // (T17) : Test 17 : Double imbalance (root modified)
- /*
- Operation:
- 9 9
- / \ / \
- 5 12 Del 10 5 15
- / \ / \ --------> / \ / \
- 3 7 10 15 3 7 12 20
- / \ / \ \ / \ / \
- 2 4 6 8 20 2 4 6 8
- / /
- 1 1
- 5
- / \
- 3 9
- -----> / \ / \
- 2 4 7 15
- / / \ / \
- 1 6 8 10 20
- T17 checks:
- - root is 5
- - all other nodes are in correct positions
- - balances and children are correct
- */
- {
- AVL tree(tio.player(), size);
- bool success = 1;
- int insert_array[] = {9, 5, 12, 7, 3, 10, 15, 2, 4, 6, 8, 20, 1};
- size_t insert_array_size = 12;
- Node node;
- for(size_t i = 0; i<=insert_array_size; i++) {
- newnode(node);
- node.key.set(insert_array[i] * tio.player());
- tree.insert(tio, yield, node);
- tree.check_avl(tio, yield);
- }
- RegAS del_key;
- del_key.set(10 * tio.player());
- tree.del(tio, yield, del_key);
- tree.check_avl(tio, yield);
- Duoram<Node>* oram = tree.get_oram();
- RegXS root_xs = tree.get_root();
- size_t root = reconstruct_RegXS(tio, yield, root_xs);
- auto A = oram->flat(tio, yield);
- auto R = A.reconstruct();
- Node root_node, n3, n7, n9;
- Node n1, n2, n4, n6, n8, n12, n15, n20;
- size_t n3_index, n7_index, n9_index;
- size_t n1_index, n2_index, n4_index, n6_index;
- size_t n8_index, n12_index, n15_index, n20_index;
- root_node = R[root];
- if((root_node.key).share()!=5) {
- success = false;
- }
- n3_index = (getAVLLeftPtr(root_node.pointers)).share();
- n9_index = (getAVLRightPtr(root_node.pointers)).share();
- n3 = R[n3_index];
- n9 = R[n9_index];
- n2_index = getAVLLeftPtr(n3.pointers).share();
- n4_index = getAVLRightPtr(n3.pointers).share();
- n7_index = getAVLLeftPtr(n9.pointers).share();
- n15_index = getAVLRightPtr(n9.pointers).share();
- n2 = R[n2_index];
- n4 = R[n4_index];
- n7 = R[n7_index];
- n15 = R[n15_index];
- n1_index = getAVLLeftPtr(n2.pointers).share();
- n6_index = getAVLLeftPtr(n7.pointers).share();
- n8_index = getAVLRightPtr(n7.pointers).share();
- n12_index = getAVLLeftPtr(n15.pointers).share();
- n20_index = getAVLRightPtr(n15.pointers).share();
- n1 = R[n1_index];
- n6 = R[n6_index];
- n8 = R[n8_index];
- n12 = R[n12_index];
- n20 = R[n20_index];
- // Node value checks
- if(n3.key.share()!=3 || n9.key.share()!=9) {
- success = false;
- }
- if(n2.key.share()!=2 || n4.key.share()!=4) {
- success = false;
- }
- if(n7.key.share()!=7 || n15.key.share()!=15) {
- success = false;
- }
- if(n1.key.share()!=1 || n6.key.share()!=6 || n8.key.share()!=8) {
- success = false;
- }
- if(n12.key.share()!=12 || n20.key.share()!=20) {
- success = false;
- }
- // Node balance checks
- size_t zero = 0;
- zero+=(n1.pointers.share());
- zero+=(n4.pointers.share());
- zero+=(n6.pointers.share());
- zero+=(n8.pointers.share());
- zero+=(n12.pointers.share());
- zero+=(n20.pointers.share());
- zero+=(getLeftBal(n7.pointers).share());
- zero+=(getRightBal(n7.pointers).share());
- zero+=(getLeftBal(n9.pointers).share());
- zero+=(getRightBal(n9.pointers).share());
- zero+=(getLeftBal(n15.pointers).share());
- zero+=(getRightBal(n15.pointers).share());
- zero+=(getRightBal(n3.pointers).share());
- zero+=(getLeftBal(root_node.pointers).share());
- zero+=(getRightBal(root_node.pointers).share());
- if(zero!=0) {
- success = false;
- }
- int one = (getLeftBal(n3.pointers).share());
- if(one!=1) {
- success = false;
- }
- if(player0) {
- if(success) {
- print_green("T17 : SUCCESS\n");
- } else {
- print_red("T17 : FAIL\n");
- }
- }
- }
- });
- }
|