online.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. #include <bsd/stdlib.h> // arc4random_buf
  2. #include "online.hpp"
  3. #include "mpcops.hpp"
  4. #include "rdpf.hpp"
  5. #include "duoram.hpp"
  6. #include "cdpf.hpp"
  7. static void online_test(MPCIO &mpcio,
  8. const PRACOptions &opts, char **args)
  9. {
  10. nbits_t nbits = VALUE_BITS;
  11. if (*args) {
  12. nbits = atoi(*args);
  13. }
  14. size_t memsize = 9;
  15. MPCTIO tio(mpcio, 0);
  16. bool is_server = (mpcio.player == 2);
  17. RegAS *A = new RegAS[memsize];
  18. value_t V;
  19. RegBS F0, F1;
  20. RegXS X;
  21. if (!is_server) {
  22. A[0].randomize();
  23. A[1].randomize();
  24. F0.randomize();
  25. A[4].randomize();
  26. F1.randomize();
  27. A[6].randomize();
  28. A[7].randomize();
  29. X.randomize();
  30. arc4random_buf(&V, sizeof(V));
  31. printf("A:\n"); for (size_t i=0; i<memsize; ++i) printf("%3lu: %016lX\n", i, A[i].ashare);
  32. printf("V : %016lX\n", V);
  33. printf("F0 : %01X\n", F0.bshare);
  34. printf("F1 : %01X\n", F1.bshare);
  35. printf("X : %016lX\n", X.xshare);
  36. }
  37. std::vector<coro_t> coroutines;
  38. coroutines.emplace_back(
  39. [&tio, &A, nbits](yield_t &yield) {
  40. mpc_mul(tio, yield, A[2], A[0], A[1], nbits);
  41. });
  42. coroutines.emplace_back(
  43. [&tio, &A, V, nbits](yield_t &yield) {
  44. mpc_valuemul(tio, yield, A[3], V, nbits);
  45. });
  46. coroutines.emplace_back(
  47. [&tio, &A, &F0, nbits](yield_t &yield) {
  48. mpc_flagmult(tio, yield, A[5], F0, A[4], nbits);
  49. });
  50. coroutines.emplace_back(
  51. [&tio, &A, &F1, nbits](yield_t &yield) {
  52. mpc_oswap(tio, yield, A[6], A[7], F1, nbits);
  53. });
  54. coroutines.emplace_back(
  55. [&tio, &A, &X, nbits](yield_t &yield) {
  56. mpc_xs_to_as(tio, yield, A[8], X, nbits);
  57. });
  58. run_coroutines(tio, coroutines);
  59. if (!is_server) {
  60. printf("\n");
  61. printf("A:\n"); for (size_t i=0; i<memsize; ++i) printf("%3lu: %016lX\n", i, A[i].ashare);
  62. }
  63. // Check the answers
  64. if (mpcio.player == 1) {
  65. tio.queue_peer(A, memsize*sizeof(RegAS));
  66. tio.queue_peer(&V, sizeof(V));
  67. tio.queue_peer(&F0, sizeof(RegBS));
  68. tio.queue_peer(&F1, sizeof(RegBS));
  69. tio.queue_peer(&X, sizeof(RegXS));
  70. tio.send();
  71. } else if (mpcio.player == 0) {
  72. RegAS *B = new RegAS[memsize];
  73. RegBS BF0, BF1;
  74. RegXS BX;
  75. value_t BV;
  76. value_t *S = new value_t[memsize];
  77. bit_t SF0, SF1;
  78. value_t SX;
  79. tio.recv_peer(B, memsize*sizeof(RegAS));
  80. tio.recv_peer(&BV, sizeof(BV));
  81. tio.recv_peer(&BF0, sizeof(RegBS));
  82. tio.recv_peer(&BF1, sizeof(RegBS));
  83. tio.recv_peer(&BX, sizeof(RegXS));
  84. for(size_t i=0; i<memsize; ++i) S[i] = A[i].ashare+B[i].ashare;
  85. SF0 = F0.bshare ^ BF0.bshare;
  86. SF1 = F1.bshare ^ BF1.bshare;
  87. SX = X.xshare ^ BX.xshare;
  88. printf("S:\n"); for (size_t i=0; i<memsize; ++i) printf("%3lu: %016lX\n", i, S[i]);
  89. printf("SF0: %01X\n", SF0);
  90. printf("SF1: %01X\n", SF1);
  91. printf("SX : %016lX\n", SX);
  92. printf("\n%016lx\n", S[0]*S[1]-S[2]);
  93. printf("%016lx\n", (V*BV)-S[3]);
  94. printf("%016lx\n", (SF0*S[4])-S[5]);
  95. printf("%016lx\n", S[8]-SX);
  96. delete[] B;
  97. delete[] S;
  98. }
  99. delete[] A;
  100. }
  101. static void lamport_test(MPCIO &mpcio,
  102. const PRACOptions &opts, char **args)
  103. {
  104. // Create a bunch of threads and send a bunch of data to the other
  105. // peer, and receive their data. If an arg is specified, repeat
  106. // that many times. The Lamport clock at the end should be just the
  107. // number of repetitions. Subsequent args are the chunk size and
  108. // the number of chunks per message
  109. size_t niters = 1;
  110. size_t chunksize = 1<<20;
  111. size_t numchunks = 1;
  112. if (*args) {
  113. niters = atoi(*args);
  114. ++args;
  115. }
  116. if (*args) {
  117. chunksize = atoi(*args);
  118. ++args;
  119. }
  120. if (*args) {
  121. numchunks = atoi(*args);
  122. ++args;
  123. }
  124. int num_threads = opts.num_threads;
  125. boost::asio::thread_pool pool(num_threads);
  126. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  127. boost::asio::post(pool, [&mpcio, thread_num, niters, chunksize, numchunks] {
  128. MPCTIO tio(mpcio, thread_num);
  129. char *sendbuf = new char[chunksize];
  130. char *recvbuf = new char[chunksize*numchunks];
  131. for (size_t i=0; i<niters; ++i) {
  132. for (size_t chunk=0; chunk<numchunks; ++chunk) {
  133. arc4random_buf(sendbuf, chunksize);
  134. tio.queue_peer(sendbuf, chunksize);
  135. }
  136. tio.send();
  137. tio.recv_peer(recvbuf, chunksize*numchunks);
  138. }
  139. delete[] recvbuf;
  140. delete[] sendbuf;
  141. });
  142. }
  143. pool.join();
  144. }
  145. static void rdpf_test(MPCIO &mpcio,
  146. const PRACOptions &opts, char **args)
  147. {
  148. nbits_t depth=6;
  149. size_t num_iters = 1;
  150. if (*args) {
  151. depth = atoi(*args);
  152. ++args;
  153. }
  154. if (*args) {
  155. num_iters = atoi(*args);
  156. ++args;
  157. }
  158. int num_threads = opts.num_threads;
  159. boost::asio::thread_pool pool(num_threads);
  160. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  161. boost::asio::post(pool, [&mpcio, thread_num, depth, num_iters] {
  162. MPCTIO tio(mpcio, thread_num);
  163. run_coroutines(tio, [&tio, depth, num_iters] (yield_t &yield) {
  164. size_t &aes_ops = tio.aes_ops();
  165. for (size_t iter=0; iter < num_iters; ++iter) {
  166. if (tio.player() == 2) {
  167. RDPFPair dp = tio.rdpfpair(yield, depth);
  168. for (int i=0;i<2;++i) {
  169. const RDPF &dpf = dp.dpf[i];
  170. for (address_t x=0;x<(address_t(1)<<depth);++x) {
  171. DPFnode leaf = dpf.leaf(x, aes_ops);
  172. RegBS ub = dpf.unit_bs(leaf);
  173. RegAS ua = dpf.unit_as(leaf);
  174. RegXS sx = dpf.scaled_xs(leaf);
  175. RegAS sa = dpf.scaled_as(leaf);
  176. printf("%04x %x %016lx %016lx %016lx\n", x,
  177. ub.bshare, ua.ashare, sx.xshare, sa.ashare);
  178. }
  179. printf("\n");
  180. }
  181. } else {
  182. RDPFTriple dt = tio.rdpftriple(yield, depth);
  183. for (int i=0;i<3;++i) {
  184. const RDPF &dpf = dt.dpf[i];
  185. RegXS peer_scaled_xor;
  186. RegAS peer_scaled_sum;
  187. if (tio.player() == 1) {
  188. tio.iostream_peer() << dpf.scaled_xor << dpf.scaled_sum;
  189. } else {
  190. tio.iostream_peer() >> peer_scaled_xor >> peer_scaled_sum;
  191. peer_scaled_sum += dpf.scaled_sum;
  192. peer_scaled_xor ^= dpf.scaled_xor;
  193. }
  194. for (address_t x=0;x<(address_t(1)<<depth);++x) {
  195. DPFnode leaf = dpf.leaf(x, aes_ops);
  196. RegBS ub = dpf.unit_bs(leaf);
  197. RegAS ua = dpf.unit_as(leaf);
  198. RegXS sx = dpf.scaled_xs(leaf);
  199. RegAS sa = dpf.scaled_as(leaf);
  200. printf("%04x %x %016lx %016lx %016lx\n", x,
  201. ub.bshare, ua.ashare, sx.xshare, sa.ashare);
  202. if (tio.player() == 1) {
  203. tio.iostream_peer() << ub << ua << sx << sa;
  204. } else {
  205. RegBS peer_ub;
  206. RegAS peer_ua;
  207. RegXS peer_sx;
  208. RegAS peer_sa;
  209. tio.iostream_peer() >> peer_ub >> peer_ua >>
  210. peer_sx >> peer_sa;
  211. ub ^= peer_ub;
  212. ua += peer_ua;
  213. sx ^= peer_sx;
  214. sa += peer_sa;
  215. if (ub.bshare || ua.ashare || sx.xshare || sa.ashare) {
  216. printf("**** %x %016lx %016lx %016lx\n",
  217. ub.bshare, ua.ashare, sx.xshare, sa.ashare);
  218. printf("SCALE %016lx %016lx\n",
  219. peer_scaled_xor.xshare, peer_scaled_sum.ashare);
  220. }
  221. }
  222. }
  223. printf("\n");
  224. }
  225. }
  226. }
  227. });
  228. });
  229. }
  230. pool.join();
  231. }
  232. static void rdpf_timing(MPCIO &mpcio,
  233. const PRACOptions &opts, char **args)
  234. {
  235. nbits_t depth=6;
  236. if (*args) {
  237. depth = atoi(*args);
  238. ++args;
  239. }
  240. int num_threads = opts.num_threads;
  241. boost::asio::thread_pool pool(num_threads);
  242. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  243. boost::asio::post(pool, [&mpcio, thread_num, depth] {
  244. MPCTIO tio(mpcio, thread_num);
  245. run_coroutines(tio, [&tio, depth] (yield_t &yield) {
  246. size_t &aes_ops = tio.aes_ops();
  247. if (tio.player() == 2) {
  248. RDPFPair dp = tio.rdpfpair(yield, depth);
  249. for (int i=0;i<2;++i) {
  250. RDPF &dpf = dp.dpf[i];
  251. dpf.expand(aes_ops);
  252. RegXS scaled_xor;
  253. for (address_t x=0;x<(address_t(1)<<depth);++x) {
  254. DPFnode leaf = dpf.leaf(x, aes_ops);
  255. RegXS sx = dpf.scaled_xs(leaf);
  256. scaled_xor ^= sx;
  257. }
  258. printf("%016lx\n%016lx\n", scaled_xor.xshare,
  259. dpf.scaled_xor.xshare);
  260. printf("\n");
  261. }
  262. } else {
  263. RDPFTriple dt = tio.rdpftriple(yield, depth);
  264. for (int i=0;i<3;++i) {
  265. RDPF &dpf = dt.dpf[i];
  266. dpf.expand(aes_ops);
  267. RegXS scaled_xor;
  268. for (address_t x=0;x<(address_t(1)<<depth);++x) {
  269. DPFnode leaf = dpf.leaf(x, aes_ops);
  270. RegXS sx = dpf.scaled_xs(leaf);
  271. scaled_xor ^= sx;
  272. }
  273. printf("%016lx\n%016lx\n", scaled_xor.xshare,
  274. dpf.scaled_xor.xshare);
  275. printf("\n");
  276. }
  277. }
  278. });
  279. });
  280. }
  281. pool.join();
  282. }
  283. static value_t parallel_streameval_rdpf(MPCIO &mpcio, const RDPF &dpf,
  284. address_t start, int num_threads)
  285. {
  286. RegXS scaled_xor[num_threads];
  287. boost::asio::thread_pool pool(num_threads);
  288. address_t totsize = (address_t(1)<<dpf.depth());
  289. address_t threadstart = start;
  290. address_t threadchunk = totsize / num_threads;
  291. address_t threadextra = totsize % num_threads;
  292. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  293. address_t threadsize = threadchunk + (address_t(thread_num) < threadextra);
  294. boost::asio::post(pool,
  295. [&mpcio, &dpf, &scaled_xor, thread_num, threadstart, threadsize] {
  296. MPCTIO tio(mpcio, thread_num);
  297. //printf("Thread %d from %X for %X\n", thread_num, threadstart, threadsize);
  298. RegXS local_xor;
  299. size_t local_aes_ops = 0;
  300. auto ev = StreamEval(dpf, threadstart, 0, local_aes_ops);
  301. for (address_t x=0;x<threadsize;++x) {
  302. //if (x%0x10000 == 0) printf("%d", thread_num);
  303. DPFnode leaf = ev.next();
  304. local_xor ^= dpf.scaled_xs(leaf);
  305. }
  306. scaled_xor[thread_num] = local_xor;
  307. tio.aes_ops() += local_aes_ops;
  308. //printf("Thread %d complete\n", thread_num);
  309. });
  310. threadstart = (threadstart + threadsize) % totsize;
  311. }
  312. pool.join();
  313. RegXS res;
  314. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  315. res ^= scaled_xor[thread_num];
  316. }
  317. return res.xshare;
  318. }
  319. static void rdpfeval_timing(MPCIO &mpcio,
  320. const PRACOptions &opts, char **args)
  321. {
  322. nbits_t depth=6;
  323. address_t start=0;
  324. if (*args) {
  325. depth = atoi(*args);
  326. ++args;
  327. }
  328. if (*args) {
  329. start = strtoull(*args, NULL, 16);
  330. ++args;
  331. }
  332. int num_threads = opts.num_threads;
  333. MPCTIO tio(mpcio, 0);
  334. run_coroutines(tio, [&mpcio, &tio, depth, start, num_threads] (yield_t &yield) {
  335. if (tio.player() == 2) {
  336. RDPFPair dp = tio.rdpfpair(yield, depth);
  337. for (int i=0;i<2;++i) {
  338. RDPF &dpf = dp.dpf[i];
  339. value_t scaled_xor =
  340. parallel_streameval_rdpf(mpcio, dpf, start, num_threads);
  341. printf("%016lx\n%016lx\n", scaled_xor,
  342. dpf.scaled_xor.xshare);
  343. printf("\n");
  344. }
  345. } else {
  346. RDPFTriple dt = tio.rdpftriple(yield, depth);
  347. for (int i=0;i<3;++i) {
  348. RDPF &dpf = dt.dpf[i];
  349. value_t scaled_xor =
  350. parallel_streameval_rdpf(mpcio, dpf, start, num_threads);
  351. printf("%016lx\n%016lx\n", scaled_xor,
  352. dpf.scaled_xor.xshare);
  353. printf("\n");
  354. }
  355. }
  356. });
  357. }
  358. static void tupleeval_timing(MPCIO &mpcio,
  359. const PRACOptions &opts, char **args)
  360. {
  361. nbits_t depth=6;
  362. address_t start=0;
  363. if (*args) {
  364. depth = atoi(*args);
  365. ++args;
  366. }
  367. if (*args) {
  368. start = atoi(*args);
  369. ++args;
  370. }
  371. int num_threads = opts.num_threads;
  372. boost::asio::thread_pool pool(num_threads);
  373. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  374. boost::asio::post(pool, [&mpcio, thread_num, depth, start] {
  375. MPCTIO tio(mpcio, thread_num);
  376. run_coroutines(tio, [&tio, depth, start] (yield_t &yield) {
  377. size_t &aes_ops = tio.aes_ops();
  378. if (tio.player() == 2) {
  379. RDPFPair dp = tio.rdpfpair(yield, depth);
  380. RegXS scaled_xor0, scaled_xor1;
  381. auto ev = StreamEval(dp, start, 0, aes_ops, false);
  382. for (address_t x=0;x<(address_t(1)<<depth);++x) {
  383. auto [L0, L1] = ev.next();
  384. RegXS sx0 = dp.dpf[0].scaled_xs(L0);
  385. RegXS sx1 = dp.dpf[1].scaled_xs(L1);
  386. scaled_xor0 ^= sx0;
  387. scaled_xor1 ^= sx1;
  388. }
  389. printf("%016lx\n%016lx\n", scaled_xor0.xshare,
  390. dp.dpf[0].scaled_xor.xshare);
  391. printf("\n");
  392. printf("%016lx\n%016lx\n", scaled_xor1.xshare,
  393. dp.dpf[1].scaled_xor.xshare);
  394. printf("\n");
  395. } else {
  396. RDPFTriple dt = tio.rdpftriple(yield, depth);
  397. RegXS scaled_xor0, scaled_xor1, scaled_xor2;
  398. auto ev = StreamEval(dt, start, 0, aes_ops, false);
  399. for (address_t x=0;x<(address_t(1)<<depth);++x) {
  400. auto [L0, L1, L2] = ev.next();
  401. RegXS sx0 = dt.dpf[0].scaled_xs(L0);
  402. RegXS sx1 = dt.dpf[1].scaled_xs(L1);
  403. RegXS sx2 = dt.dpf[2].scaled_xs(L2);
  404. scaled_xor0 ^= sx0;
  405. scaled_xor1 ^= sx1;
  406. scaled_xor2 ^= sx2;
  407. }
  408. printf("%016lx\n%016lx\n", scaled_xor0.xshare,
  409. dt.dpf[0].scaled_xor.xshare);
  410. printf("\n");
  411. printf("%016lx\n%016lx\n", scaled_xor1.xshare,
  412. dt.dpf[1].scaled_xor.xshare);
  413. printf("\n");
  414. printf("%016lx\n%016lx\n", scaled_xor2.xshare,
  415. dt.dpf[2].scaled_xor.xshare);
  416. printf("\n");
  417. }
  418. });
  419. });
  420. }
  421. pool.join();
  422. }
  423. // T is RegAS or RegXS for additive or XOR shared database respectively
  424. template <typename T>
  425. static void duoram_test(MPCIO &mpcio,
  426. const PRACOptions &opts, char **args)
  427. {
  428. nbits_t depth=6;
  429. address_t share=arc4random();
  430. if (*args) {
  431. depth = atoi(*args);
  432. ++args;
  433. }
  434. if (*args) {
  435. share = atoi(*args);
  436. ++args;
  437. }
  438. share &= ((address_t(1)<<depth)-1);
  439. int num_threads = opts.num_threads;
  440. boost::asio::thread_pool pool(num_threads);
  441. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  442. boost::asio::post(pool, [&mpcio, thread_num, depth, share] {
  443. MPCTIO tio(mpcio, thread_num);
  444. run_coroutines(tio, [&tio, depth, share] (yield_t &yield) {
  445. size_t size = size_t(1)<<depth;
  446. // size_t &aes_ops = tio.aes_ops();
  447. Duoram<T> oram(tio.player(), size);
  448. auto A = oram.flat(tio, yield);
  449. RegAS aidx;
  450. aidx.ashare = share;
  451. T M;
  452. if (tio.player() == 0) {
  453. M.set(0xbabb0000);
  454. } else {
  455. M.set(0x0000a66e);
  456. }
  457. RegXS xidx;
  458. xidx.xshare = share;
  459. T N;
  460. if (tio.player() == 0) {
  461. N.set(0xdead0000);
  462. } else {
  463. N.set(0x0000beef);
  464. }
  465. // Writing and reading with additively shared indices
  466. printf("Updating\n");
  467. A[aidx] += M;
  468. printf("Reading\n");
  469. T Aa = A[aidx];
  470. // Writing and reading with XOR shared indices
  471. printf("Updating\n");
  472. A[xidx] += N;
  473. printf("Reading\n");
  474. T Ax = A[xidx];
  475. T Ae;
  476. // Writing and reading with explicit indices
  477. if (depth > 2) {
  478. A[5] += Aa;
  479. Ae = A[6];
  480. }
  481. if (depth <= 10) {
  482. oram.dump();
  483. auto check = A.reconstruct();
  484. if (tio.player() == 0) {
  485. for (address_t i=0;i<size;++i) {
  486. printf("%04x %016lx\n", i, check[i].share());
  487. }
  488. }
  489. }
  490. auto checkread = A.reconstruct(Aa);
  491. auto checkreade = A.reconstruct(Ae);
  492. auto checkreadx = A.reconstruct(Ax);
  493. if (tio.player() == 0) {
  494. printf("Read AS value = %016lx\n", checkread.share());
  495. printf("Read AX value = %016lx\n", checkreadx.share());
  496. printf("Read Ex value = %016lx\n", checkreade.share());
  497. }
  498. });
  499. });
  500. }
  501. pool.join();
  502. }
  503. static void cdpf_test(MPCIO &mpcio,
  504. const PRACOptions &opts, char **args)
  505. {
  506. value_t query, target;
  507. int iters = 1;
  508. arc4random_buf(&query, sizeof(query));
  509. arc4random_buf(&target, sizeof(target));
  510. if (*args) {
  511. query = strtoull(*args, NULL, 16);
  512. ++args;
  513. }
  514. if (*args) {
  515. target = strtoull(*args, NULL, 16);
  516. ++args;
  517. }
  518. if (*args) {
  519. iters = atoi(*args);
  520. ++args;
  521. }
  522. int num_threads = opts.num_threads;
  523. boost::asio::thread_pool pool(num_threads);
  524. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  525. boost::asio::post(pool, [&mpcio, thread_num, query, target, iters] {
  526. MPCTIO tio(mpcio, thread_num);
  527. run_coroutines(tio, [&tio, query, target, iters] (yield_t &yield) {
  528. size_t &aes_ops = tio.aes_ops();
  529. for (int i=0;i<iters;++i) {
  530. if (tio.player() == 2) {
  531. tio.cdpf(yield);
  532. auto [ dpf0, dpf1 ] = CDPF::generate(target, aes_ops);
  533. DPFnode leaf0 = dpf0.leaf(query, aes_ops);
  534. DPFnode leaf1 = dpf1.leaf(query, aes_ops);
  535. printf("DPFXOR_{%016lx}(%016lx} = ", target, query);
  536. dump_node(leaf0 ^ leaf1);
  537. } else {
  538. CDPF dpf = tio.cdpf(yield);
  539. printf("ashare = %016lX\nxshare = %016lX\n",
  540. dpf.as_target.ashare, dpf.xs_target.xshare);
  541. DPFnode leaf = dpf.leaf(query, aes_ops);
  542. printf("DPF(%016lx) = ", query);
  543. dump_node(leaf);
  544. if (tio.player() == 1) {
  545. tio.iostream_peer() << leaf;
  546. } else {
  547. DPFnode peerleaf;
  548. tio.iostream_peer() >> peerleaf;
  549. printf("XOR = ");
  550. dump_node(leaf ^ peerleaf);
  551. }
  552. }
  553. }
  554. });
  555. });
  556. }
  557. pool.join();
  558. }
  559. static int compare_test_one(MPCTIO &tio, yield_t &yield,
  560. value_t target, value_t x)
  561. {
  562. int player = tio.player();
  563. size_t &aes_ops = tio.aes_ops();
  564. int res = 1;
  565. if (player == 2) {
  566. // Create a CDPF pair with the given target
  567. auto [dpf0, dpf1] = CDPF::generate(target, aes_ops);
  568. // Send it and a share of x to the computational parties
  569. RegAS x0, x1;
  570. x0.randomize();
  571. x1.set(x-x0.share());
  572. tio.iostream_p0() << dpf0 << x0;
  573. tio.iostream_p1() << dpf1 << x1;
  574. } else {
  575. CDPF dpf;
  576. RegAS xsh;
  577. tio.iostream_server() >> dpf >> xsh;
  578. auto [lt, eq, gt] = dpf.compare(tio, yield, xsh, aes_ops);
  579. printf("%016lx %016lx %d %d %d ", target, x, lt.bshare,
  580. eq.bshare, gt.bshare);
  581. // Check the answer
  582. if (player == 1) {
  583. tio.iostream_peer() << xsh << lt << eq << gt;
  584. } else {
  585. RegAS peer_xsh;
  586. RegBS peer_lt, peer_eq, peer_gt;
  587. tio.iostream_peer() >> peer_xsh >> peer_lt >> peer_eq >> peer_gt;
  588. lt ^= peer_lt;
  589. eq ^= peer_eq;
  590. gt ^= peer_gt;
  591. xsh += peer_xsh;
  592. int lti = int(lt.bshare);
  593. int eqi = int(eq.bshare);
  594. int gti = int(gt.bshare);
  595. x = xsh.share();
  596. printf(": %d %d %d ", lti, eqi, gti);
  597. bool signbit = (x >> 63);
  598. if (lti + eqi + gti != 1) {
  599. printf("INCONSISTENT");
  600. res = 0;
  601. } else if (x == 0 && eqi) {
  602. printf("=");
  603. } else if (!signbit && gti) {
  604. printf(">");
  605. } else if (signbit && lti) {
  606. printf("<");
  607. } else {
  608. printf("INCORRECT");
  609. res = 0;
  610. }
  611. }
  612. printf("\n");
  613. }
  614. return res;
  615. }
  616. static int compare_test_target(MPCTIO &tio, yield_t &yield,
  617. value_t target, value_t x)
  618. {
  619. int res = 1;
  620. res &= compare_test_one(tio, yield, target, x);
  621. res &= compare_test_one(tio, yield, target, 0);
  622. res &= compare_test_one(tio, yield, target, 1);
  623. res &= compare_test_one(tio, yield, target, 15);
  624. res &= compare_test_one(tio, yield, target, 16);
  625. res &= compare_test_one(tio, yield, target, 17);
  626. res &= compare_test_one(tio, yield, target, -1);
  627. res &= compare_test_one(tio, yield, target, -15);
  628. res &= compare_test_one(tio, yield, target, -16);
  629. res &= compare_test_one(tio, yield, target, -17);
  630. res &= compare_test_one(tio, yield, target, (value_t(1)<<63));
  631. res &= compare_test_one(tio, yield, target, (value_t(1)<<63)+1);
  632. res &= compare_test_one(tio, yield, target, (value_t(1)<<63)-1);
  633. return res;
  634. }
  635. static void compare_test(MPCIO &mpcio,
  636. const PRACOptions &opts, char **args)
  637. {
  638. value_t target, x;
  639. arc4random_buf(&target, sizeof(target));
  640. arc4random_buf(&x, sizeof(x));
  641. if (*args) {
  642. target = strtoull(*args, NULL, 16);
  643. ++args;
  644. }
  645. if (*args) {
  646. x = strtoull(*args, NULL, 16);
  647. ++args;
  648. }
  649. int num_threads = opts.num_threads;
  650. boost::asio::thread_pool pool(num_threads);
  651. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  652. boost::asio::post(pool, [&mpcio, thread_num, target, x] {
  653. MPCTIO tio(mpcio, thread_num);
  654. run_coroutines(tio, [&tio, target, x] (yield_t &yield) {
  655. int res = 1;
  656. res &= compare_test_target(tio, yield, target, x);
  657. res &= compare_test_target(tio, yield, 0, x);
  658. res &= compare_test_target(tio, yield, 1, x);
  659. res &= compare_test_target(tio, yield, 15, x);
  660. res &= compare_test_target(tio, yield, 16, x);
  661. res &= compare_test_target(tio, yield, 17, x);
  662. res &= compare_test_target(tio, yield, -1, x);
  663. res &= compare_test_target(tio, yield, -15, x);
  664. res &= compare_test_target(tio, yield, -16, x);
  665. res &= compare_test_target(tio, yield, -17, x);
  666. res &= compare_test_target(tio, yield, (value_t(1)<<63), x);
  667. res &= compare_test_target(tio, yield, (value_t(1)<<63)+1, x);
  668. res &= compare_test_target(tio, yield, (value_t(1)<<63)-1, x);
  669. if (tio.player() == 0) {
  670. if (res == 1) {
  671. printf("All tests passed!\n");
  672. } else {
  673. printf("TEST FAILURES\n");
  674. }
  675. }
  676. });
  677. });
  678. }
  679. pool.join();
  680. }
  681. static void sort_test(MPCIO &mpcio,
  682. const PRACOptions &opts, char **args)
  683. {
  684. nbits_t depth=6;
  685. if (*args) {
  686. depth = atoi(*args);
  687. ++args;
  688. }
  689. int num_threads = opts.num_threads;
  690. boost::asio::thread_pool pool(num_threads);
  691. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  692. boost::asio::post(pool, [&mpcio, thread_num, depth] {
  693. MPCTIO tio(mpcio, thread_num);
  694. run_coroutines(tio, [&tio, depth] (yield_t &yield) {
  695. address_t size = address_t(1)<<depth;
  696. // size_t &aes_ops = tio.aes_ops();
  697. Duoram<RegAS> oram(tio.player(), size);
  698. auto A = oram.flat(tio, yield);
  699. A.explicitonly(true);
  700. // Initialize the memory to random values in parallel
  701. std::vector<coro_t> coroutines;
  702. for (address_t i=0; i<size; ++i) {
  703. coroutines.emplace_back(
  704. [&A, i](yield_t &yield) {
  705. auto Acoro = A.context(yield);
  706. RegAS v;
  707. v.randomize(62);
  708. Acoro[i] += v;
  709. });
  710. }
  711. run_coroutines(yield, coroutines);
  712. A.bitonic_sort(0, depth);
  713. if (depth <= 10) {
  714. oram.dump();
  715. auto check = A.reconstruct();
  716. if (tio.player() == 0) {
  717. for (address_t i=0;i<size;++i) {
  718. printf("%04x %016lx\n", i, check[i].share());
  719. }
  720. }
  721. }
  722. });
  723. });
  724. }
  725. pool.join();
  726. }
  727. static void bsearch_test(MPCIO &mpcio,
  728. const PRACOptions &opts, char **args)
  729. {
  730. value_t target;
  731. arc4random_buf(&target, sizeof(target));
  732. target >>= 1;
  733. nbits_t depth=6;
  734. if (*args) {
  735. depth = atoi(*args);
  736. ++args;
  737. }
  738. if (*args) {
  739. target = strtoull(*args, NULL, 16);
  740. ++args;
  741. }
  742. int num_threads = opts.num_threads;
  743. boost::asio::thread_pool pool(num_threads);
  744. for (int thread_num = 0; thread_num < num_threads; ++thread_num) {
  745. boost::asio::post(pool, [&mpcio, thread_num, depth, target] {
  746. MPCTIO tio(mpcio, thread_num);
  747. run_coroutines(tio, [&tio, depth, target] (yield_t &yield) {
  748. address_t size = address_t(1)<<depth;
  749. RegAS tshare;
  750. if (tio.player() == 2) {
  751. // Send shares of the target to the computational
  752. // players
  753. RegAS tshare0, tshare1;
  754. tshare0.randomize();
  755. tshare1.set(target-tshare0.share());
  756. tio.iostream_p0() << tshare0;
  757. tio.iostream_p1() << tshare1;
  758. printf("Using target = %016lx\n", target);
  759. yield();
  760. } else {
  761. // Get the share of the target
  762. tio.iostream_server() >> tshare;
  763. }
  764. // Create a random database and sort it
  765. // size_t &aes_ops = tio.aes_ops();
  766. Duoram<RegAS> oram(tio.player(), size);
  767. auto A = oram.flat(tio, yield);
  768. A.explicitonly(true);
  769. // Initialize the memory to random values in parallel
  770. std::vector<coro_t> coroutines;
  771. for (address_t i=0; i<size; ++i) {
  772. coroutines.emplace_back(
  773. [&A, i](yield_t &yield) {
  774. auto Acoro = A.context(yield);
  775. RegAS v;
  776. v.randomize(62);
  777. Acoro[i] += v;
  778. });
  779. }
  780. run_coroutines(yield, coroutines);
  781. A.bitonic_sort(0, depth);
  782. // Binary search for the target
  783. RegAS tindex = A.obliv_binary_search(tshare);
  784. // Check the answer
  785. if (tio.player() == 1) {
  786. tio.iostream_peer() << tindex;
  787. } else if (tio.player() == 0) {
  788. RegAS peer_tindex;
  789. tio.iostream_peer() >> peer_tindex;
  790. tindex += peer_tindex;
  791. }
  792. if (depth <= 10) {
  793. auto check = A.reconstruct();
  794. if (tio.player() == 0) {
  795. for (address_t i=0;i<size;++i) {
  796. printf("%04x %016lx\n", i, check[i].share());
  797. }
  798. }
  799. }
  800. if (tio.player() == 0) {
  801. printf("Found index = %lx\n", tindex.share());
  802. }
  803. });
  804. });
  805. }
  806. pool.join();
  807. }
  808. void online_main(MPCIO &mpcio, const PRACOptions &opts, char **args)
  809. {
  810. MPCTIO tio(mpcio, 0);
  811. if (!*args) {
  812. std::cerr << "Mode is required as the first argument when not preprocessing.\n";
  813. return;
  814. } else if (!strcmp(*args, "test")) {
  815. ++args;
  816. online_test(mpcio, opts, args);
  817. } else if (!strcmp(*args, "lamporttest")) {
  818. ++args;
  819. lamport_test(mpcio, opts, args);
  820. } else if (!strcmp(*args, "rdpftest")) {
  821. ++args;
  822. rdpf_test(mpcio, opts, args);
  823. } else if (!strcmp(*args, "rdpftime")) {
  824. ++args;
  825. rdpf_timing(mpcio, opts, args);
  826. } else if (!strcmp(*args, "evaltime")) {
  827. ++args;
  828. rdpfeval_timing(mpcio, opts, args);
  829. } else if (!strcmp(*args, "tupletime")) {
  830. ++args;
  831. tupleeval_timing(mpcio, opts, args);
  832. } else if (!strcmp(*args, "duotest")) {
  833. ++args;
  834. if (opts.use_xor_db) {
  835. duoram_test<RegXS>(mpcio, opts, args);
  836. } else {
  837. duoram_test<RegAS>(mpcio, opts, args);
  838. }
  839. } else if (!strcmp(*args, "cdpftest")) {
  840. ++args;
  841. cdpf_test(mpcio, opts, args);
  842. } else if (!strcmp(*args, "cmptest")) {
  843. ++args;
  844. compare_test(mpcio, opts, args);
  845. } else if (!strcmp(*args, "sorttest")) {
  846. ++args;
  847. sort_test(mpcio, opts, args);
  848. } else if (!strcmp(*args, "bsearch")) {
  849. ++args;
  850. bsearch_test(mpcio, opts, args);
  851. } else {
  852. std::cerr << "Unknown mode " << *args << "\n";
  853. }
  854. }