123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 |
- /* Copyright (C) 2014 Stony Brook University
- This file is part of Graphene Library OS.
- Graphene Library OS is free software: you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public License
- as published by the Free Software Foundation, either version 3 of the
- License, or (at your option) any later version.
- Graphene Library OS is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- /*
- * slabmgr.h
- *
- * This file contains implementation of SLAB (variable-size) memory allocator.
- */
- #ifndef SLABMGR_H
- #define SLABMGR_H
- #include <assert.h>
- #include <errno.h>
- #include <pal_debug.h>
- #include <sys/mman.h>
- #include "api.h"
- #include "list.h"
- // Before calling any of `system_malloc` and `system_free` this library will
- // acquire `SYSTEM_LOCK` (the systen_* implementation must not do it).
- #ifndef system_malloc
- #error "macro \"void * system_malloc(int size)\" not declared"
- #endif
- #ifndef system_free
- #error "macro \"void * system_free(void * ptr, int size)\" not declared"
- #endif
- #ifndef SYSTEM_LOCK
- #define SYSTEM_LOCK() ({})
- #endif
- #ifndef SYSTEM_UNLOCK
- #define SYSTEM_UNLOCK() ({})
- #endif
- /* malloc is supposed to provide some kind of alignment guarantees, but
- * I can't find a specific reference to what that should be for x86_64.
- * The first link here is a reference to a technical report from Mozilla,
- * which seems to indicate that 64-bit platforms align return values to
- * 16-bytes. calloc and malloc provide the same alignment guarantees.
- * calloc additionally sets the memory to 0, which malloc is not required
- * to do.
- *
- * http://www.erahm.org/2016/03/24/minimum-alignment-of-allocation-across-platforms/
- * http://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html
- */
- #define MIN_MALLOC_ALIGNMENT 16
- /* Slab objects need to be a multiple of 16 bytes to ensure proper address
- * alignment for malloc and calloc. */
- #define OBJ_PADDING 15
- #define LARGE_OBJ_PADDING 8
- /* Returns the smallest exact multiple of _y that is at least as large as _x.
- * In other words, returns _x if _x is a multiple of _y, otherwise rounds
- * _x up to be a multiple of _y.
- */
- #define ROUND_UP(_x, _y) ((((_x) + (_y) - 1) / (_y)) * (_y))
- DEFINE_LIST(slab_obj);
- typedef struct __attribute__((packed)) slab_obj {
- unsigned char level;
- unsigned char padding[OBJ_PADDING];
- union {
- LIST_TYPE(slab_obj) __list;
- unsigned char* raw;
- };
- } SLAB_OBJ_TYPE, *SLAB_OBJ;
- /* In order for slab elements to be 16-byte aligned, struct slab_area must
- * be a multiple of 16 bytes. TODO: Add compile time assertion that this
- * invariant is respected. */
- #define AREA_PADDING 12
- DEFINE_LIST(slab_area);
- typedef struct __attribute__((packed)) slab_area {
- LIST_TYPE(slab_area) __list;
- unsigned int size;
- unsigned char pad[AREA_PADDING];
- unsigned char raw[];
- } SLAB_AREA_TYPE, *SLAB_AREA;
- #ifdef SLAB_DEBUG
- struct slab_debug {
- struct {
- const char* file;
- int line;
- } alloc, free;
- };
- #define SLAB_DEBUG_SIZE sizeof(struct slab_debug)
- #else
- #define SLAB_DEBUG_SIZE 0
- #endif
- #ifdef SLAB_CANARY
- #define SLAB_CANARY_STRING 0xDEADBEEF
- #define SLAB_CANARY_SIZE sizeof(unsigned long)
- #else
- #define SLAB_CANARY_SIZE 0
- #endif
- #define SLAB_HDR_SIZE \
- ROUND_UP((sizeof(SLAB_OBJ_TYPE) - sizeof(LIST_TYPE(slab_obj)) + SLAB_DEBUG_SIZE + \
- SLAB_CANARY_SIZE), \
- MIN_MALLOC_ALIGNMENT)
- #ifndef SLAB_LEVEL
- #define SLAB_LEVEL 8
- #endif
- #ifndef SLAB_LEVEL_SIZES
- #define SLAB_LEVEL_SIZES \
- 16, 32, 64, 128 - SLAB_HDR_SIZE, 256 - SLAB_HDR_SIZE, 512 - SLAB_HDR_SIZE, \
- 1024 - SLAB_HDR_SIZE, 2048 - SLAB_HDR_SIZE
- #define SLAB_LEVELS_SUM (4080 - SLAB_HDR_SIZE * 5)
- #else
- #ifndef SLAB_LEVELS_SUM
- #error "SALB_LEVELS_SUM not defined"
- #endif
- #endif
- // User buffer sizes on each level (not counting mandatory header
- // (SLAB_HDR_SIZE)).
- static const size_t slab_levels[SLAB_LEVEL] = {SLAB_LEVEL_SIZES};
- DEFINE_LISTP(slab_obj);
- DEFINE_LISTP(slab_area);
- typedef struct slab_mgr {
- LISTP_TYPE(slab_area) area_list[SLAB_LEVEL];
- LISTP_TYPE(slab_obj) free_list[SLAB_LEVEL];
- size_t size[SLAB_LEVEL];
- void* addr[SLAB_LEVEL];
- void* addr_top[SLAB_LEVEL];
- SLAB_AREA active_area[SLAB_LEVEL];
- } SLAB_MGR_TYPE, *SLAB_MGR;
- typedef struct __attribute__((packed)) large_mem_obj {
- // offset 0
- unsigned long size; // User buffer size (i.e. excluding control structures)
- unsigned char large_padding[LARGE_OBJ_PADDING];
- // offset 16
- unsigned char level;
- unsigned char padding[OBJ_PADDING];
- // offset 32
- unsigned char raw[];
- } LARGE_MEM_OBJ_TYPE, *LARGE_MEM_OBJ;
- #define OBJ_LEVEL(obj) ((obj)->level)
- #define OBJ_RAW(obj) (&(obj)->raw)
- #define RAW_TO_LEVEL(raw_ptr) (*((const unsigned char*)(raw_ptr) - OBJ_PADDING - 1))
- #define RAW_TO_OBJ(raw_ptr, type) container_of((raw_ptr), type, raw)
- #define __SUM_OBJ_SIZE(slab_size, size) (((slab_size) + SLAB_HDR_SIZE) * (size))
- #define __MIN_MEM_SIZE() (sizeof(SLAB_AREA_TYPE))
- #define __MAX_MEM_SIZE(slab_size, size) (__MIN_MEM_SIZE() + __SUM_OBJ_SIZE((slab_size), (size)))
- #define __INIT_SUM_OBJ_SIZE(size) ((SLAB_LEVELS_SUM + SLAB_HDR_SIZE * SLAB_LEVEL) * (size))
- #define __INIT_MIN_MEM_SIZE() (sizeof(SLAB_MGR_TYPE) + sizeof(SLAB_AREA_TYPE) * SLAB_LEVEL)
- #define __INIT_MAX_MEM_SIZE(size) (__INIT_MIN_MEM_SIZE() + __INIT_SUM_OBJ_SIZE(size))
- #ifdef PAGE_SIZE
- static inline int size_align_down(int slab_size, int size) {
- assert(IS_POWER_OF_2(PAGE_SIZE));
- int s = __MAX_MEM_SIZE(slab_size, size);
- int p = s - ALIGN_DOWN_POW2(s, PAGE_SIZE);
- int o = __SUM_OBJ_SIZE(slab_size, 1);
- return size - p / o - (p % o ? 1 : 0);
- }
- static inline int size_align_up(int slab_size, int size) {
- assert(IS_POWER_OF_2(PAGE_SIZE));
- int s = __MAX_MEM_SIZE(slab_size, size);
- int p = ALIGN_UP_POW2(s, PAGE_SIZE) - s;
- int o = __SUM_OBJ_SIZE(slab_size, 1);
- return size + p / o;
- }
- static inline int init_align_down(int size) {
- assert(IS_POWER_OF_2(PAGE_SIZE));
- int s = __INIT_MAX_MEM_SIZE(size);
- int p = s - ALIGN_DOWN_POW2(s, PAGE_SIZE);
- int o = __INIT_SUM_OBJ_SIZE(1);
- return size - p / o - (p % o ? 1 : 0);
- }
- static inline int init_size_align_up(int size) {
- assert(IS_POWER_OF_2(PAGE_SIZE));
- int s = __INIT_MAX_MEM_SIZE(size);
- int p = ALIGN_UP_POW2(s, PAGE_SIZE) - s;
- int o = __INIT_SUM_OBJ_SIZE(1);
- return size + p / o;
- }
- #endif /* PAGE_SIZE */
- #ifndef STARTUP_SIZE
- #define STARTUP_SIZE 16
- #endif
- static inline void __set_free_slab_area(SLAB_AREA area, SLAB_MGR mgr, int level) {
- int slab_size = slab_levels[level] + SLAB_HDR_SIZE;
- mgr->addr[level] = (void*)area->raw;
- mgr->addr_top[level] = (void*)area->raw + (area->size * slab_size);
- mgr->size[level] += area->size;
- mgr->active_area[level] = area;
- }
- static inline SLAB_MGR create_slab_mgr(void) {
- #ifdef PAGE_SIZE
- size_t size = init_size_align_up(STARTUP_SIZE);
- #else
- size_t size = STARTUP_SIZE;
- #endif
- void* mem = NULL;
- SLAB_AREA area;
- SLAB_MGR mgr;
- /* If the allocation failed, always try smaller sizes */
- for (; size > 0; size >>= 1) {
- mem = system_malloc(__INIT_MAX_MEM_SIZE(size));
- if (mem)
- break;
- }
- if (!mem)
- return NULL;
- mgr = (SLAB_MGR)mem;
- void* addr = (void*)mgr + sizeof(SLAB_MGR_TYPE);
- int i;
- for (i = 0; i < SLAB_LEVEL; i++) {
- area = (SLAB_AREA)addr;
- area->size = size;
- INIT_LIST_HEAD(area, __list);
- INIT_LISTP(&mgr->area_list[i]);
- LISTP_ADD_TAIL(area, &mgr->area_list[i], __list);
- INIT_LISTP(&mgr->free_list[i]);
- mgr->size[i] = 0;
- __set_free_slab_area(area, mgr, i);
- addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
- }
- return mgr;
- }
- static inline void destroy_slab_mgr(SLAB_MGR mgr) {
- void* addr = (void*)mgr + sizeof(SLAB_MGR_TYPE);
- SLAB_AREA area, tmp, n;
- int i;
- for (i = 0; i < SLAB_LEVEL; i++) {
- area = (SLAB_AREA)addr;
- LISTP_FOR_EACH_ENTRY_SAFE(tmp, n, &mgr->area_list[i], __list) {
- if (tmp != area)
- system_free(area, __MAX_MEM_SIZE(slab_levels[i], area->size));
- }
- addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
- }
- system_free(mgr, addr - (void*)mgr);
- }
- // SYSTEM_LOCK needs to be held by the caller on entry.
- static inline int enlarge_slab_mgr(SLAB_MGR mgr, int level) {
- assert(level < SLAB_LEVEL);
- /* DEP 11/24/17: This strategy basically doubles a level's size
- * every time it grows. The assumption if we get this far is that
- * mgr->addr == mgr->top_addr */
- assert(mgr->addr[level] == mgr->addr_top[level]);
- size_t size = mgr->size[level];
- SLAB_AREA area;
- /* If there is a previously allocated area, just activate it. */
- area = LISTP_PREV_ENTRY(mgr->active_area[level], &mgr->area_list[level], __list);
- if (area) {
- __set_free_slab_area(area, mgr, level);
- return 0;
- }
- /* system_malloc() may be blocking, so we release the lock before
- * allocating more memory */
- SYSTEM_UNLOCK();
- /* If the allocation failed, always try smaller sizes */
- for (; size > 0; size >>= 1) {
- area = (SLAB_AREA)system_malloc(__MAX_MEM_SIZE(slab_levels[level], size));
- if (area)
- break;
- }
- if (!area) {
- SYSTEM_LOCK();
- return -ENOMEM;
- }
- SYSTEM_LOCK();
- area->size = size;
- INIT_LIST_HEAD(area, __list);
- /* There can be concurrent operations to extend the SLAB manager. In case
- * someone has already enlarged the space, we just add the new area to the
- * list for later use. */
- LISTP_ADD(area, &mgr->area_list[level], __list);
- if (mgr->size[level] == size) /* check if the size has changed */
- __set_free_slab_area(area, mgr, level);
- return 0;
- }
- static inline void* slab_alloc(SLAB_MGR mgr, size_t size) {
- SLAB_OBJ mobj;
- int i;
- int level = -1;
- for (i = 0; i < SLAB_LEVEL; i++)
- if (size <= slab_levels[i]) {
- level = i;
- break;
- }
- if (level == -1) {
- LARGE_MEM_OBJ mem = (LARGE_MEM_OBJ)system_malloc(sizeof(LARGE_MEM_OBJ_TYPE) + size);
- if (!mem)
- return NULL;
- mem->size = size;
- OBJ_LEVEL(mem) = (unsigned char)-1;
- return OBJ_RAW(mem);
- }
- SYSTEM_LOCK();
- assert(mgr->addr[level] <= mgr->addr_top[level]);
- if (mgr->addr[level] == mgr->addr_top[level] && LISTP_EMPTY(&mgr->free_list[level])) {
- int ret = enlarge_slab_mgr(mgr, level);
- if (ret < 0) {
- SYSTEM_UNLOCK();
- return NULL;
- }
- }
- if (!LISTP_EMPTY(&mgr->free_list[level])) {
- mobj = LISTP_FIRST_ENTRY(&mgr->free_list[level], SLAB_OBJ_TYPE, __list);
- LISTP_DEL(mobj, &mgr->free_list[level], __list);
- } else {
- mobj = (void*)mgr->addr[level];
- mgr->addr[level] += slab_levels[level] + SLAB_HDR_SIZE;
- }
- assert(mgr->addr[level] <= mgr->addr_top[level]);
- OBJ_LEVEL(mobj) = level;
- SYSTEM_UNLOCK();
- #ifdef SLAB_CANARY
- unsigned long* m = (unsigned long*)((void*)OBJ_RAW(mobj) + slab_levels[level]);
- *m = SLAB_CANARY_STRING;
- #endif
- return OBJ_RAW(mobj);
- }
- #ifdef SLAB_DEBUG
- static inline void* slab_alloc_debug(SLAB_MGR mgr, size_t size, const char* file, int line) {
- void* mem = slab_alloc(mgr, size);
- int i;
- int level = -1;
- for (i = 0; i < SLAB_LEVEL; i++)
- if (size <= slab_levels[i]) {
- level = i;
- break;
- }
- if (level != -1) {
- struct slab_debug* debug =
- (struct slab_debug*)(mem + slab_levels[level] + SLAB_CANARY_SIZE);
- debug->alloc.file = file;
- debug->alloc.line = line;
- }
- return mem;
- }
- #endif
- // Returns user buffer size (i.e. excluding size of control structures).
- static inline size_t slab_get_buf_size(const void* ptr) {
- assert(ptr);
- unsigned char level = RAW_TO_LEVEL(ptr);
- if (level == (unsigned char)-1) {
- LARGE_MEM_OBJ mem = RAW_TO_OBJ(ptr, LARGE_MEM_OBJ_TYPE);
- return mem->size;
- }
- if (level >= SLAB_LEVEL) {
- pal_printf("Heap corruption detected: invalid heap level %u\n", level);
- __abort();
- }
- #ifdef SLAB_CANARY
- const unsigned long* m = (const unsigned long*)(ptr + slab_levels[level]);
- __UNUSED(m);
- assert(*m == SLAB_CANARY_STRING);
- #endif
- return slab_levels[level];
- }
- static inline void slab_free(SLAB_MGR mgr, void* obj) {
- /* In a general purpose allocator, free of NULL is allowed (and is a
- * nop). We might want to enforce stricter rules for our allocator if
- * we're sure that no clients rely on being able to free NULL. */
- if (!obj)
- return;
- unsigned char level = RAW_TO_LEVEL(obj);
- if (level == (unsigned char)-1) {
- LARGE_MEM_OBJ mem = RAW_TO_OBJ(obj, LARGE_MEM_OBJ_TYPE);
- system_free(mem, mem->size + sizeof(LARGE_MEM_OBJ_TYPE));
- return;
- }
- /* If this happens, either the heap is already corrupted, or someone's
- * freeing something that's wrong, which will most likely lead to heap
- * corruption. Either way, panic if this happens. TODO: this doesn't allow
- * us to detect cases where the heap headers have been zeroed, which
- * is a common type of heap corruption. We could make this case slightly
- * more likely to be detected by adding a non-zero offset to the level,
- * so a level of 0 in the header would no longer be a valid level. */
- if (level >= SLAB_LEVEL) {
- pal_printf("Heap corruption detected: invalid heap level %d\n", level);
- __abort();
- }
- #ifdef SLAB_CANARY
- unsigned long* m = (unsigned long*)(obj + slab_levels[level]);
- __UNUSED(m);
- assert(*m == SLAB_CANARY_STRING);
- #endif
- SLAB_OBJ mobj = RAW_TO_OBJ(obj, SLAB_OBJ_TYPE);
- SYSTEM_LOCK();
- INIT_LIST_HEAD(mobj, __list);
- LISTP_ADD_TAIL(mobj, &mgr->free_list[level], __list);
- SYSTEM_UNLOCK();
- }
- #ifdef SLAB_DEBUG
- static inline void slab_free_debug(SLAB_MGR mgr, void* obj, const char* file, int line) {
- if (!obj)
- return;
- unsigned char level = RAW_TO_LEVEL(obj);
- if (level < SLAB_LEVEL && level != (unsigned char)-1) {
- struct slab_debug* debug =
- (struct slab_debug*)(obj + slab_levels[level] + SLAB_CANARY_SIZE);
- debug->free.file = file;
- debug->free.line = line;
- }
- slab_free(mgr, obj);
- }
- #endif
- #endif /* SLABMGR_H */
|