slabmgr.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. /* Copyright (C) 2014 Stony Brook University
  2. This file is part of Graphene Library OS.
  3. Graphene Library OS is free software: you can redistribute it and/or
  4. modify it under the terms of the GNU Lesser General Public License
  5. as published by the Free Software Foundation, either version 3 of the
  6. License, or (at your option) any later version.
  7. Graphene Library OS is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU Lesser General Public License for more details.
  11. You should have received a copy of the GNU Lesser General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>. */
  13. /*
  14. * slabmgr.h
  15. *
  16. * This file contains implementation of SLAB (variable-size) memory allocator.
  17. */
  18. #ifndef SLABMGR_H
  19. #define SLABMGR_H
  20. #include <assert.h>
  21. #include <errno.h>
  22. #include <pal_debug.h>
  23. #include <sys/mman.h>
  24. #include "api.h"
  25. #include "list.h"
  26. // Before calling any of `system_malloc` and `system_free` this library will
  27. // acquire `SYSTEM_LOCK` (the systen_* implementation must not do it).
  28. #ifndef system_malloc
  29. #error "macro \"void * system_malloc(int size)\" not declared"
  30. #endif
  31. #ifndef system_free
  32. #error "macro \"void * system_free(void * ptr, int size)\" not declared"
  33. #endif
  34. #ifndef SYSTEM_LOCK
  35. #define SYSTEM_LOCK() ({})
  36. #endif
  37. #ifndef SYSTEM_UNLOCK
  38. #define SYSTEM_UNLOCK() ({})
  39. #endif
  40. /* malloc is supposed to provide some kind of alignment guarantees, but
  41. * I can't find a specific reference to what that should be for x86_64.
  42. * The first link here is a reference to a technical report from Mozilla,
  43. * which seems to indicate that 64-bit platforms align return values to
  44. * 16-bytes. calloc and malloc provide the same alignment guarantees.
  45. * calloc additionally sets the memory to 0, which malloc is not required
  46. * to do.
  47. *
  48. * http://www.erahm.org/2016/03/24/minimum-alignment-of-allocation-across-platforms/
  49. * http://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html
  50. */
  51. #define MIN_MALLOC_ALIGNMENT 16
  52. /* Slab objects need to be a multiple of 16 bytes to ensure proper address
  53. * alignment for malloc and calloc. */
  54. #define OBJ_PADDING 15
  55. #define LARGE_OBJ_PADDING 8
  56. /* Returns the smallest exact multiple of _y that is at least as large as _x.
  57. * In other words, returns _x if _x is a multiple of _y, otherwise rounds
  58. * _x up to be a multiple of _y.
  59. */
  60. #define ROUND_UP(_x, _y) ((((_x) + (_y) - 1) / (_y)) * (_y))
  61. DEFINE_LIST(slab_obj);
  62. typedef struct __attribute__((packed)) slab_obj {
  63. unsigned char level;
  64. unsigned char padding[OBJ_PADDING];
  65. union {
  66. LIST_TYPE(slab_obj) __list;
  67. unsigned char* raw;
  68. };
  69. } SLAB_OBJ_TYPE, *SLAB_OBJ;
  70. /* In order for slab elements to be 16-byte aligned, struct slab_area must
  71. * be a multiple of 16 bytes. TODO: Add compile time assertion that this
  72. * invariant is respected. */
  73. #define AREA_PADDING 12
  74. DEFINE_LIST(slab_area);
  75. typedef struct __attribute__((packed)) slab_area {
  76. LIST_TYPE(slab_area) __list;
  77. unsigned int size;
  78. unsigned char pad[AREA_PADDING];
  79. unsigned char raw[];
  80. } SLAB_AREA_TYPE, *SLAB_AREA;
  81. #ifdef SLAB_DEBUG
  82. struct slab_debug {
  83. struct {
  84. const char* file;
  85. int line;
  86. } alloc, free;
  87. };
  88. #define SLAB_DEBUG_SIZE sizeof(struct slab_debug)
  89. #else
  90. #define SLAB_DEBUG_SIZE 0
  91. #endif
  92. #ifdef SLAB_CANARY
  93. #define SLAB_CANARY_STRING 0xDEADBEEF
  94. #define SLAB_CANARY_SIZE sizeof(unsigned long)
  95. #else
  96. #define SLAB_CANARY_SIZE 0
  97. #endif
  98. #define SLAB_HDR_SIZE \
  99. ROUND_UP((sizeof(SLAB_OBJ_TYPE) - sizeof(LIST_TYPE(slab_obj)) + SLAB_DEBUG_SIZE + \
  100. SLAB_CANARY_SIZE), \
  101. MIN_MALLOC_ALIGNMENT)
  102. #ifndef SLAB_LEVEL
  103. #define SLAB_LEVEL 8
  104. #endif
  105. #ifndef SLAB_LEVEL_SIZES
  106. #define SLAB_LEVEL_SIZES \
  107. 16, 32, 64, 128 - SLAB_HDR_SIZE, 256 - SLAB_HDR_SIZE, 512 - SLAB_HDR_SIZE, \
  108. 1024 - SLAB_HDR_SIZE, 2048 - SLAB_HDR_SIZE
  109. #define SLAB_LEVELS_SUM (4080 - SLAB_HDR_SIZE * 5)
  110. #else
  111. #ifndef SLAB_LEVELS_SUM
  112. #error "SALB_LEVELS_SUM not defined"
  113. #endif
  114. #endif
  115. // User buffer sizes on each level (not counting mandatory header
  116. // (SLAB_HDR_SIZE)).
  117. static const size_t slab_levels[SLAB_LEVEL] = {SLAB_LEVEL_SIZES};
  118. DEFINE_LISTP(slab_obj);
  119. DEFINE_LISTP(slab_area);
  120. typedef struct slab_mgr {
  121. LISTP_TYPE(slab_area) area_list[SLAB_LEVEL];
  122. LISTP_TYPE(slab_obj) free_list[SLAB_LEVEL];
  123. size_t size[SLAB_LEVEL];
  124. void* addr[SLAB_LEVEL];
  125. void* addr_top[SLAB_LEVEL];
  126. SLAB_AREA active_area[SLAB_LEVEL];
  127. } SLAB_MGR_TYPE, *SLAB_MGR;
  128. typedef struct __attribute__((packed)) large_mem_obj {
  129. // offset 0
  130. unsigned long size; // User buffer size (i.e. excluding control structures)
  131. unsigned char large_padding[LARGE_OBJ_PADDING];
  132. // offset 16
  133. unsigned char level;
  134. unsigned char padding[OBJ_PADDING];
  135. // offset 32
  136. unsigned char raw[];
  137. } LARGE_MEM_OBJ_TYPE, *LARGE_MEM_OBJ;
  138. #define OBJ_LEVEL(obj) ((obj)->level)
  139. #define OBJ_RAW(obj) (&(obj)->raw)
  140. #define RAW_TO_LEVEL(raw_ptr) (*((const unsigned char*)(raw_ptr) - OBJ_PADDING - 1))
  141. #define RAW_TO_OBJ(raw_ptr, type) container_of((raw_ptr), type, raw)
  142. #define __SUM_OBJ_SIZE(slab_size, size) (((slab_size) + SLAB_HDR_SIZE) * (size))
  143. #define __MIN_MEM_SIZE() (sizeof(SLAB_AREA_TYPE))
  144. #define __MAX_MEM_SIZE(slab_size, size) (__MIN_MEM_SIZE() + __SUM_OBJ_SIZE((slab_size), (size)))
  145. #define __INIT_SUM_OBJ_SIZE(size) ((SLAB_LEVELS_SUM + SLAB_HDR_SIZE * SLAB_LEVEL) * (size))
  146. #define __INIT_MIN_MEM_SIZE() (sizeof(SLAB_MGR_TYPE) + sizeof(SLAB_AREA_TYPE) * SLAB_LEVEL)
  147. #define __INIT_MAX_MEM_SIZE(size) (__INIT_MIN_MEM_SIZE() + __INIT_SUM_OBJ_SIZE(size))
  148. #ifdef PAGE_SIZE
  149. static inline int size_align_down(int slab_size, int size) {
  150. assert(IS_POWER_OF_2(PAGE_SIZE));
  151. int s = __MAX_MEM_SIZE(slab_size, size);
  152. int p = s - ALIGN_DOWN_POW2(s, PAGE_SIZE);
  153. int o = __SUM_OBJ_SIZE(slab_size, 1);
  154. return size - p / o - (p % o ? 1 : 0);
  155. }
  156. static inline int size_align_up(int slab_size, int size) {
  157. assert(IS_POWER_OF_2(PAGE_SIZE));
  158. int s = __MAX_MEM_SIZE(slab_size, size);
  159. int p = ALIGN_UP_POW2(s, PAGE_SIZE) - s;
  160. int o = __SUM_OBJ_SIZE(slab_size, 1);
  161. return size + p / o;
  162. }
  163. static inline int init_align_down(int size) {
  164. assert(IS_POWER_OF_2(PAGE_SIZE));
  165. int s = __INIT_MAX_MEM_SIZE(size);
  166. int p = s - ALIGN_DOWN_POW2(s, PAGE_SIZE);
  167. int o = __INIT_SUM_OBJ_SIZE(1);
  168. return size - p / o - (p % o ? 1 : 0);
  169. }
  170. static inline int init_size_align_up(int size) {
  171. assert(IS_POWER_OF_2(PAGE_SIZE));
  172. int s = __INIT_MAX_MEM_SIZE(size);
  173. int p = ALIGN_UP_POW2(s, PAGE_SIZE) - s;
  174. int o = __INIT_SUM_OBJ_SIZE(1);
  175. return size + p / o;
  176. }
  177. #endif /* PAGE_SIZE */
  178. #ifndef STARTUP_SIZE
  179. #define STARTUP_SIZE 16
  180. #endif
  181. static inline void __set_free_slab_area(SLAB_AREA area, SLAB_MGR mgr, int level) {
  182. int slab_size = slab_levels[level] + SLAB_HDR_SIZE;
  183. mgr->addr[level] = (void*)area->raw;
  184. mgr->addr_top[level] = (void*)area->raw + (area->size * slab_size);
  185. mgr->size[level] += area->size;
  186. mgr->active_area[level] = area;
  187. }
  188. static inline SLAB_MGR create_slab_mgr(void) {
  189. #ifdef PAGE_SIZE
  190. size_t size = init_size_align_up(STARTUP_SIZE);
  191. #else
  192. size_t size = STARTUP_SIZE;
  193. #endif
  194. void* mem = NULL;
  195. SLAB_AREA area;
  196. SLAB_MGR mgr;
  197. /* If the allocation failed, always try smaller sizes */
  198. for (; size > 0; size >>= 1) {
  199. mem = system_malloc(__INIT_MAX_MEM_SIZE(size));
  200. if (mem)
  201. break;
  202. }
  203. if (!mem)
  204. return NULL;
  205. mgr = (SLAB_MGR)mem;
  206. void* addr = (void*)mgr + sizeof(SLAB_MGR_TYPE);
  207. int i;
  208. for (i = 0; i < SLAB_LEVEL; i++) {
  209. area = (SLAB_AREA)addr;
  210. area->size = size;
  211. INIT_LIST_HEAD(area, __list);
  212. INIT_LISTP(&mgr->area_list[i]);
  213. LISTP_ADD_TAIL(area, &mgr->area_list[i], __list);
  214. INIT_LISTP(&mgr->free_list[i]);
  215. mgr->size[i] = 0;
  216. __set_free_slab_area(area, mgr, i);
  217. addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
  218. }
  219. return mgr;
  220. }
  221. static inline void destroy_slab_mgr(SLAB_MGR mgr) {
  222. void* addr = (void*)mgr + sizeof(SLAB_MGR_TYPE);
  223. SLAB_AREA area, tmp, n;
  224. int i;
  225. for (i = 0; i < SLAB_LEVEL; i++) {
  226. area = (SLAB_AREA)addr;
  227. LISTP_FOR_EACH_ENTRY_SAFE(tmp, n, &mgr->area_list[i], __list) {
  228. if (tmp != area)
  229. system_free(area, __MAX_MEM_SIZE(slab_levels[i], area->size));
  230. }
  231. addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
  232. }
  233. system_free(mgr, addr - (void*)mgr);
  234. }
  235. // SYSTEM_LOCK needs to be held by the caller on entry.
  236. static inline int enlarge_slab_mgr(SLAB_MGR mgr, int level) {
  237. assert(level < SLAB_LEVEL);
  238. /* DEP 11/24/17: This strategy basically doubles a level's size
  239. * every time it grows. The assumption if we get this far is that
  240. * mgr->addr == mgr->top_addr */
  241. assert(mgr->addr[level] == mgr->addr_top[level]);
  242. size_t size = mgr->size[level];
  243. SLAB_AREA area;
  244. /* If there is a previously allocated area, just activate it. */
  245. area = LISTP_PREV_ENTRY(mgr->active_area[level], &mgr->area_list[level], __list);
  246. if (area) {
  247. __set_free_slab_area(area, mgr, level);
  248. return 0;
  249. }
  250. /* system_malloc() may be blocking, so we release the lock before
  251. * allocating more memory */
  252. SYSTEM_UNLOCK();
  253. /* If the allocation failed, always try smaller sizes */
  254. for (; size > 0; size >>= 1) {
  255. area = (SLAB_AREA)system_malloc(__MAX_MEM_SIZE(slab_levels[level], size));
  256. if (area)
  257. break;
  258. }
  259. if (!area) {
  260. SYSTEM_LOCK();
  261. return -ENOMEM;
  262. }
  263. SYSTEM_LOCK();
  264. area->size = size;
  265. INIT_LIST_HEAD(area, __list);
  266. /* There can be concurrent operations to extend the SLAB manager. In case
  267. * someone has already enlarged the space, we just add the new area to the
  268. * list for later use. */
  269. LISTP_ADD(area, &mgr->area_list[level], __list);
  270. if (mgr->size[level] == size) /* check if the size has changed */
  271. __set_free_slab_area(area, mgr, level);
  272. return 0;
  273. }
  274. static inline void* slab_alloc(SLAB_MGR mgr, size_t size) {
  275. SLAB_OBJ mobj;
  276. int i;
  277. int level = -1;
  278. for (i = 0; i < SLAB_LEVEL; i++)
  279. if (size <= slab_levels[i]) {
  280. level = i;
  281. break;
  282. }
  283. if (level == -1) {
  284. LARGE_MEM_OBJ mem = (LARGE_MEM_OBJ)system_malloc(sizeof(LARGE_MEM_OBJ_TYPE) + size);
  285. if (!mem)
  286. return NULL;
  287. mem->size = size;
  288. OBJ_LEVEL(mem) = (unsigned char)-1;
  289. return OBJ_RAW(mem);
  290. }
  291. SYSTEM_LOCK();
  292. assert(mgr->addr[level] <= mgr->addr_top[level]);
  293. if (mgr->addr[level] == mgr->addr_top[level] && LISTP_EMPTY(&mgr->free_list[level])) {
  294. int ret = enlarge_slab_mgr(mgr, level);
  295. if (ret < 0) {
  296. SYSTEM_UNLOCK();
  297. return NULL;
  298. }
  299. }
  300. if (!LISTP_EMPTY(&mgr->free_list[level])) {
  301. mobj = LISTP_FIRST_ENTRY(&mgr->free_list[level], SLAB_OBJ_TYPE, __list);
  302. LISTP_DEL(mobj, &mgr->free_list[level], __list);
  303. } else {
  304. mobj = (void*)mgr->addr[level];
  305. mgr->addr[level] += slab_levels[level] + SLAB_HDR_SIZE;
  306. }
  307. assert(mgr->addr[level] <= mgr->addr_top[level]);
  308. OBJ_LEVEL(mobj) = level;
  309. SYSTEM_UNLOCK();
  310. #ifdef SLAB_CANARY
  311. unsigned long* m = (unsigned long*)((void*)OBJ_RAW(mobj) + slab_levels[level]);
  312. *m = SLAB_CANARY_STRING;
  313. #endif
  314. return OBJ_RAW(mobj);
  315. }
  316. #ifdef SLAB_DEBUG
  317. static inline void* slab_alloc_debug(SLAB_MGR mgr, size_t size, const char* file, int line) {
  318. void* mem = slab_alloc(mgr, size);
  319. int i;
  320. int level = -1;
  321. for (i = 0; i < SLAB_LEVEL; i++)
  322. if (size <= slab_levels[i]) {
  323. level = i;
  324. break;
  325. }
  326. if (level != -1) {
  327. struct slab_debug* debug =
  328. (struct slab_debug*)(mem + slab_levels[level] + SLAB_CANARY_SIZE);
  329. debug->alloc.file = file;
  330. debug->alloc.line = line;
  331. }
  332. return mem;
  333. }
  334. #endif
  335. // Returns user buffer size (i.e. excluding size of control structures).
  336. static inline size_t slab_get_buf_size(const void* ptr) {
  337. assert(ptr);
  338. unsigned char level = RAW_TO_LEVEL(ptr);
  339. if (level == (unsigned char)-1) {
  340. LARGE_MEM_OBJ mem = RAW_TO_OBJ(ptr, LARGE_MEM_OBJ_TYPE);
  341. return mem->size;
  342. }
  343. if (level >= SLAB_LEVEL) {
  344. pal_printf("Heap corruption detected: invalid heap level %u\n", level);
  345. __abort();
  346. }
  347. #ifdef SLAB_CANARY
  348. const unsigned long* m = (const unsigned long*)(ptr + slab_levels[level]);
  349. __UNUSED(m);
  350. assert(*m == SLAB_CANARY_STRING);
  351. #endif
  352. return slab_levels[level];
  353. }
  354. static inline void slab_free(SLAB_MGR mgr, void* obj) {
  355. /* In a general purpose allocator, free of NULL is allowed (and is a
  356. * nop). We might want to enforce stricter rules for our allocator if
  357. * we're sure that no clients rely on being able to free NULL. */
  358. if (!obj)
  359. return;
  360. unsigned char level = RAW_TO_LEVEL(obj);
  361. if (level == (unsigned char)-1) {
  362. LARGE_MEM_OBJ mem = RAW_TO_OBJ(obj, LARGE_MEM_OBJ_TYPE);
  363. system_free(mem, mem->size + sizeof(LARGE_MEM_OBJ_TYPE));
  364. return;
  365. }
  366. /* If this happens, either the heap is already corrupted, or someone's
  367. * freeing something that's wrong, which will most likely lead to heap
  368. * corruption. Either way, panic if this happens. TODO: this doesn't allow
  369. * us to detect cases where the heap headers have been zeroed, which
  370. * is a common type of heap corruption. We could make this case slightly
  371. * more likely to be detected by adding a non-zero offset to the level,
  372. * so a level of 0 in the header would no longer be a valid level. */
  373. if (level >= SLAB_LEVEL) {
  374. pal_printf("Heap corruption detected: invalid heap level %d\n", level);
  375. __abort();
  376. }
  377. #ifdef SLAB_CANARY
  378. unsigned long* m = (unsigned long*)(obj + slab_levels[level]);
  379. __UNUSED(m);
  380. assert(*m == SLAB_CANARY_STRING);
  381. #endif
  382. SLAB_OBJ mobj = RAW_TO_OBJ(obj, SLAB_OBJ_TYPE);
  383. SYSTEM_LOCK();
  384. INIT_LIST_HEAD(mobj, __list);
  385. LISTP_ADD_TAIL(mobj, &mgr->free_list[level], __list);
  386. SYSTEM_UNLOCK();
  387. }
  388. #ifdef SLAB_DEBUG
  389. static inline void slab_free_debug(SLAB_MGR mgr, void* obj, const char* file, int line) {
  390. if (!obj)
  391. return;
  392. unsigned char level = RAW_TO_LEVEL(obj);
  393. if (level < SLAB_LEVEL && level != (unsigned char)-1) {
  394. struct slab_debug* debug =
  395. (struct slab_debug*)(obj + slab_levels[level] + SLAB_CANARY_SIZE);
  396. debug->free.file = file;
  397. debug->free.line = line;
  398. }
  399. slab_free(mgr, obj);
  400. }
  401. #endif
  402. #endif /* SLABMGR_H */