No Description

Chia-Che Tsai 268cd51b05 Add HACKING.md for Emacs and Vim configuration 4 years ago
.github 48226cda8a [PR template] Move more text into comments 5 years ago
Jenkinsfiles 79d6fb27ec [*/regression] Migrate to Python 3 5 years ago
LibOS 4ddca71177 [Pal, LibOS] Remove passing of ELF aux vectors from PAL to LibOS 4 years ago
Pal 4ddca71177 [Pal, LibOS] Remove passing of ELF aux vectors from PAL to LibOS 4 years ago
Runtime c9eb1d84e1 Fix Bash shebangs compatibility 5 years ago
Scripts a84fe47843 Clean up .gitignore files 5 years ago
Tools 2bc2c04194 Remove trailing blanks 5 years ago
.clang-format 139d49a72f First cut at a .clang-format for the project 5 years ago
.dir-locals.el 713863b521 [.dir-locals.el] Add makefile-mode and asm-mode 5 years ago
.gitignore a84fe47843 Clean up .gitignore files 5 years ago
.gitmodules 0433461802 License change to LGPL (#140) 6 years ago
.travis.yml 2bc2c04194 Remove trailing blanks 5 years ago
CODESTYLE.md 64cd1abd31 Add CODESTYLE.md 5 years ago
CONTRIBUTING.md 64cd1abd31 Add CODESTYLE.md 5 years ago
HACKING.md 268cd51b05 Add HACKING.md for Emacs and Vim configuration 4 years ago
LICENSE.addendum.txt 2bc2c04194 Remove trailing blanks 5 years ago
LICENSE.txt 0433461802 License change to LGPL (#140) 6 years ago
Makefile f14049316a [Build] Add `make format` target 5 years ago
Makefile.rules 91cb93f95d [Makefile.rules] Add function "cc-option" to check available GCC options 4 years ago
README.md 456f03aad8 Fix a few typos in code comments, debug info, and README 4 years ago
index.md c818d66e91 Create index.md with a redirect (#224) 5 years ago

README.md

Graphene Library OS with Intel:registered: SGX Support

Travis Logo

A Linux-compatible Library OS for Multi-Process Applications

1. WHAT IS GRAPHENE?

Graphene Library OS is a project which provides lightweight guest OSes with support for Linux multi-process applications. Graphene can run applications in an isolated environment with virtualization benefits such as guest customization, platform independence, and migration, which is comparable to other virtual machines.

Graphene Library OS supports native, unmodified Linux applications on any platform. Currently, Graphene Library OS is successfully ported to Linux, FreeBSD and Intel SGX enclaves upon Linux platforms.

With the Intel:registered: SGX support, Graphene Library OS can secure a critical application in a hardware encrypted memory region. Graphene Library OS can protect applications against a malicious system stack with minimal porting effort.

Graphene Library OS is a work published in Eurosys 2014. For more information. see the paper: Tsai, et al, "Cooperation and Security Isolation of Library OSes for Multi-Process Applications", Eurosys 2014.

2. HOW TO BUILD GRAPHENE?

Graphene Library OS is consist of five parts:

  • Instrumented GNU Library C
  • LibOS (a shared library named "libsysdb.so")
  • PAL, a.k.a Platform Adaption Layer (a shared library named "libpal.so")
  • Reference monitor (a shared library named "libpal_sec.so")
  • Minor kernel customization and kernel modules

Graphene Library OS currently only works on x86_64 architecture.

Graphene Library OS is tested to be compiling and running on Ubuntu 14.04/16.04 (both server and desktop version), along with Linux kernel 3.5/3.14/4.4. We recommend to build and install Graphene with the same host platform. Other distributions of 64-bit Linux can potentially, but the result is not guaranteed. If you find Graphene not working on other distributions, please contact us with a detailed bug report.

The following packages are required for building Graphene: (can be installed with 'apt-get install')

  • build-essential
  • autoconf
  • gawk
  • gcc 4 or 5

The following packages are also required for building Graphene for SGX (can be installed with 'apt-get install'):

  • python-protobuf
  • python-crypto

To build the system, simply run the following commands in the root of the source tree:

git submodule update --init
make

Each part of Graphene can be built separately in the subdirectories.

To build Graphene library OS with debug symbols, run "make DEBUG=1" instead of "make". To specify custom mirrors for downloading the GLIBC source, use "GLIBC_MIRRORS=..." when running "make".

To build with "-Werror", run "make WERROR=1".

2.1. BUILD WITH KERNEL-LEVEL SANDBOXING (OPTIONAL)

** Note: this step is optional. **

** Note: for building with Intel:registered: SGX support, skip this step, go to section 2.2 **

** Disclaimer: this feature is experimental and may contain bugs. Please do no use in production system before further assessment.

To enable sandboxing, a customized Linux kernel is needed. Note that this feature is optional and completely unnecessary for running on SGX. To build the Graphene Linux kernel, do the following steps:

cd Pal/linux-3.19
make menuconfig
make
make install
(Add Graphene kernel as a boot option by commands like "update-grub")
(reboot and choose the Graphene kernel)

Please note that the building process may pause before building the Linux kernel, because it requires you to provide a sensible configuration file (.config). The Graphene kernel requires the following options to be enabled in the configuration:

  • CONFIG_GRAPHENE=y
  • CONFIG_GRAPHENE_BULK_IPC=y
  • CONFIG_GRAPHENE_ISOLATE=y

For more details about the building and installation, see the Graphene github Wiki page: https://github.com/oscarlab/graphene/wiki.

2.2 BUILD WITH INTEL:registered: SGX SUPPORT

2.1.1 Prerequisites

(1) Generating signing keys A 3072-bit RSA private key (PEM format) is required for signing the enclaves. If you don't have a private key, create it with the following command:

openssl genrsa -3 -out enclave-key.pem 3072

You could either put the generated enclave key to the default path, 'host/Linux-SGX/signer/enclave-key.pem', or specify the key through environment variable 'SGX_SIGNER_KEY' when building Graphene with SGX support.

After signing the enclaves, users may ship the application files with the built Graphene Library OS, along with a SGX-specific manifest (.manifest.sgx files) and the signatures, to the SGX-enabled hosts.

(2) Installing Intel SGX SDK and driver The Intel SGX Linux SDK is required for running Graphene Library OS. Download and install from the official Intel github repositories:

A Linux driver must be installed before running Graphene Library OS in enclaves. Simply run the following command to build the driver:

** Please make sure the GCC version is either 4 or 5 **

cd Pal/src/host/Linux-SGX/sgx-driver
make
(The console will be prompted to ask for the path of Intel SGX driver code)
sudo ./load.sh

2.1.2 Building Graphene-SGX

To build Graphene Library OS with Intel SGX support, in the root directory of Graphene repo, run following command:

make SGX=1

To build with debug symbols, run the command:

make SGX=1 DEBUG=1

Using "make SGX=1" in the test or regression directory will automatically generate the enclave signatures (.sig files).

2.1.3 Run Built-in Examples in Graphene-SGX

There are a few built-in examples under LibOS/shim/test/. The "native" folder includes a rich set of C programs and "apps" folder includes a few tested applications, such as GCC, Python, and Apache.

(1) Build and run a Hello World program with Graphene on SGX

  • go to LibOS/shim/test/native, build the enclaves via command:

    make SGX=1

The command will build enclaves for all the programs in the folder

  • Generate the token from aesmd service, via command:

    make SGX_RUN=1

  • Run Hello World program with Graphene on SGX:

    SGX=1 ./pal_loader helloworld or ./pal_loader SGX helloworld

(2) Build and run python helloworld script in Graphene on SGX

  • go to LibOS/shim/test/apps/python, build the enclave:

    make SGX=1

  • Generate token:

    make SGX_RUN=1

  • Run python helloworld with Graphene-SGX via:

    SGX=1 ./python.manifest.sgx scripts/helloworld.py

3. HOW TO RUN AN APPLICATION IN GRAPHENE?

Graphene library OS uses PAL (libpal.so) as a loader to bootstrap an application in the library OS. To start Graphene, PAL (libpal.so) will have to be run as an executable, with the name of the program, and a "manifest file" given from the command line. Graphene provides three options for specifying the programs and manifest files:

  • option 1: (automatic manifest)

    [PATH TO Runtime]/pal_loader [PROGRAM] [ARGUMENTS]... (Manifest file: "[PROGRAM].manifest" or "manifest")

  • option 2: (given manifest)

    [PATH TO Runtime]/pal_loader [MANIFEST] [ARGUMENTS]...

  • option 3: (manifest as a script)

    [PATH TO MANIFEST]/[MANIFEST] [ARGUMENTS]... (Manifest must have "#![PATH_TO_PAL]/libpal.so" as the first line)

Using "libpal.so" as loader to start Graphene will not attach the applications to the Graphene reference monitor. The applications will have better performance, but no strong security isolation. To attach the applications to the Graphene reference monitor, Graphene must be started with the PAL reference monitor loader (libpal_sec.so). Graphene provides three options for specifying the programs and manifest files to the loader:

  • option 4: (automatic manifest - with reference monitor)

    SEC=1 [PATH TO Runtime]/pal_loader [PROGRAM] [ARGUMENTS]... (Manifest file: "[PROGRAM].manifest" or "manifest")

  • option 5: (given manifest - with reference monitor)

    SEC=1 [PATH TO Pal/src]/pal_loader [MANIFEST] [ARGUMENTS]...

  • option 6: (manifest as a script - with reference monitor)

    SEC=1 [PATH TO MANIFEST]/[MANIFEST] [ARGUMENTS]... (Manifest must have "#![PATH TO Pal/src]/pal_sec" as the first line)

Although manifest files are optional for Graphene, running an application usually requires some minimal configuration in its manifest file. A sensible manifest file will include paths to the library OS and GNU library C, environment variables such as LD_LIBRARY_PATH, file systems to be mounted, and isolation rules to be enforced in the reference monitor.

Here is an example of manifest files:

loader.preload = file:LibOS/shim/src/libsysdb.so
loader.env.LDL_LIBRAY_PATH = /lib
fs.mount.glibc.type = chroot
fs.mount.glibc.path = /lib
fs.mount.glibc.uri = file:LibOS/build

More examples can be found in the test directories (LibOS/shim/test). We have also tested several commercial applications such as GCC, Bash and Apache, and the manifest files that bootstrap them in Graphene are provided in the individual directories.

For more information and the detail of the manifest syntax, see the Graphene github Wiki page: https://github.com/oscarlab/graphene/wiki.

4. CONTACT

For any questions or bug reports, please send an email to support@graphene-project.io or post an issue on our GitHub repository: https://github.com/oscarlab/graphene/issues.

Our mailing list is publicly archived here.