No Description

Chia-Che Tsai 82ea92de08 reverse the change in pal_linux_defs.h 9 years ago
LibOS ff7a89cdec Fix robust list behavior 10 years ago
Pal 82ea92de08 reverse the change in pal_linux_defs.h 9 years ago
Scripts 10c06ad723 The first official release 10 years ago
Makefile 10c06ad723 The first official release 10 years ago
README 85932d9c1e minor 10 years ago

README


Graphene Library OS

A Linux-compatible Library OS for Multi-Process Applications


1. WHAT IS GRAPHENE?

Graphene Library OS is a project to provided lightweight guest OSes with
support for Linux multi-process applications. Comparable to virtual
machines, Graphene can run applications in an isolated environment, with
virtualization benefits such as guest customization, platform independence
and migration.

Graphene Library OS is a work published in Eurosys 2014. For more
information. see the paper: Tsai, et al, "Cooperation and Security Isolation
of Library OSes for Multi-Process Applications", Eurosys 2014.



2. HOW TO BUILD GRAPHENE?

Graphene Library OS is consist of five parts:
- Instrumented GNU Library C
- LibOS (a shared library named "libsysdb.so")
- PAL, a.k.a Platform Adaption Layer (a shared library named "libpal.so")
- Reference monitor (a shared library named "libpal_sec.so")
- Minor kernel customization and kernel modules

Graphene Library OS currently only works on x86_64 architecture.

Graphene Library OS is tested to be compiling and running on Ubuntu 12.04/14.04
(both server and desktop version), along with Linux kernel 3.5/3.14.
We recommand to build and install Graphene with the same host platform.
Other distributions of 64-bit Linux can potentially, but the result is not
guaranteed. If you find Graphene not working on other distributions, please
contact us with a detailed bug report.

The following packages are required for building Graphene: (can be installed
with 'apt-get install')
- build-essential
- autoconf
- gawk

To build the system, simply run the following commands in the root of the
source tree:

make
make install
(Add Graphene kernel as a boot option by commands like "update-grub")
(reboot and choose the Graphene kernel)

Please note that the building process may pause before building the Linux
kernel, because it requires you to provide a sensible configuration file
(.config). The Graphene kernel requires the following options to be enabled
in the configuration:

- CONFIG_GRAPHENE=y
- CONFIG_GRAPHENE_BULK_IPC=y
- CONFIG_GRAPHENE_ISOLATE=y

Each part of Graphene can be built separately in the subdirectories.

To build Graphene library OS with debug symbol, run "make debug" instead of
"make".

For more details about the building and installation, see the Graphene github
Wiki page: .



3. HOW TO RUN AN APPLICATION IN GRAPHENE?

Graphene library OS uses PAL (libpal.so) as a loader to bootstrap an
application in the library OS. To start Graphene, PAL (libpal.so) will have
to be run as an executable, with the name of the program, and a "manifest
file" given from the command line. Graphene provides three options for
spcifying the programs and manifest files:

option 1: (automatic manifest)
[PATH_TO_PAL]/libpal.so [PROGRAM] [ARGUMENTS]...
(Manifest file: "[PROGRAM].manifest" or "manifest")

option 2: (given manifest)
[PATH_TO_PAL]/libpal.so [MANIFEST] [ARGUMENTS]...

option 3: (manifest as a script)
[PATH_TO_MANIFEST]/[MANIFEST] [ARGUMENTS]...
(Manifest must have "#![PATH_TO_PAL]/libpal.so" as the first line)

Using "libpal.so" as loader to start Graphene will not attach the applications
to the Graphene reference monitor. Tha applications will have better
performance, but no strong security isolation. To attach the applications to
the Graphene reference monitor, Graphene must be started with the PAL
reference monitor loader (libpal_sec.so). Graphene provides three options for
spcifying the programs and manifest files to the loader:

option 4: (automatic manifest - with reference monitor)
[PATH_TO_PAL]/libpal.so [PROGRAM] [ARGUMENTS]...
(Manifest file: "[PROGRAM].manifest" or "manifest")

option 5: (given manifest - with reference monitor)
[PATH_TO_PAL]/libpal.so [MANIFEST] [ARGUMENTS]...

option 6: (manifest as a script - with reference monitor)
[PATH_TO_MANIFEST]/[MANIFEST] [ARGUMENTS]...
(Manifest must have "#![PATH_TO_PAL]/libpal.so" as the first line)


Although manifest files are optional for Graphene, running an application
usually requires some minimal configuration in its manifest file. A
sensible manifest file will include paths to the library OS and GNU
library C, environment variables such as LD_LIBRARY_PATH, file systems to
be mounted, and isolation rules to be enforced in the reference monitor.

Here is an example of manifest files:

loader.preload = file:LibOS/shim/src/libsysdb.so
loader.env.LDL_LIBRAY_PATH = /lib
fs.mount.root.type = chroot
fs.mount.root.uri = file:/
fs.mount.other.glibc.type = chroot
fs.mount.other.glibc.path = /lib
fs.mount.other.glibc.uri = file:LibOS/build

More examples can be found in the test directories (LibOS/shim/test). We have
also tested several commercial applications such as GCC, Bash and Apache,
and the manifest files that bootstrap them in Graphene are provided in the
individual directories.

For more information and the detail of the manifest syntax, see the Graphene
github Wiki page: .



4. HOW TO CONTACT THE MAINTAINER?

For any questions or bug reports, please contact us:

Chia-Che Tsai
Donald Porter

or post an issue on our github repository: