|
@@ -5,418 +5,438 @@ using namespace std;
|
|
using namespace seal;
|
|
using namespace seal;
|
|
using namespace seal::util;
|
|
using namespace seal::util;
|
|
|
|
|
|
-PIRServer::PIRServer(const EncryptionParameters &enc_params, const PirParams &pir_params) :
|
|
|
|
- enc_params_(enc_params),
|
|
|
|
- pir_params_(pir_params),
|
|
|
|
- is_db_preprocessed_(false)
|
|
|
|
-{
|
|
|
|
- context_ = make_shared<SEALContext>(enc_params, true);
|
|
|
|
- evaluator_ = make_unique<Evaluator>(*context_);
|
|
|
|
- encoder_ = make_unique<BatchEncoder>(*context_);
|
|
|
|
|
|
+PIRServer::PIRServer(const EncryptionParameters &enc_params,
|
|
|
|
+ const PirParams &pir_params)
|
|
|
|
+ : enc_params_(enc_params), pir_params_(pir_params),
|
|
|
|
+ is_db_preprocessed_(false) {
|
|
|
|
+ context_ = make_shared<SEALContext>(enc_params, true);
|
|
|
|
+ evaluator_ = make_unique<Evaluator>(*context_);
|
|
|
|
+ encoder_ = make_unique<BatchEncoder>(*context_);
|
|
}
|
|
}
|
|
|
|
|
|
void PIRServer::preprocess_database() {
|
|
void PIRServer::preprocess_database() {
|
|
- if (!is_db_preprocessed_) {
|
|
|
|
|
|
+ if (!is_db_preprocessed_) {
|
|
|
|
|
|
- for (uint32_t i = 0; i < db_->size(); i++) {
|
|
|
|
- evaluator_->transform_to_ntt_inplace(
|
|
|
|
- db_->operator[](i), context_->first_parms_id());
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- is_db_preprocessed_ = true;
|
|
|
|
|
|
+ for (uint32_t i = 0; i < db_->size(); i++) {
|
|
|
|
+ evaluator_->transform_to_ntt_inplace(db_->operator[](i),
|
|
|
|
+ context_->first_parms_id());
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+ is_db_preprocessed_ = true;
|
|
|
|
+ }
|
|
}
|
|
}
|
|
|
|
|
|
// Server takes over ownership of db and will free it when it exits
|
|
// Server takes over ownership of db and will free it when it exits
|
|
void PIRServer::set_database(unique_ptr<vector<Plaintext>> &&db) {
|
|
void PIRServer::set_database(unique_ptr<vector<Plaintext>> &&db) {
|
|
- if (!db) {
|
|
|
|
- throw invalid_argument("db cannot be null");
|
|
|
|
- }
|
|
|
|
|
|
+ if (!db) {
|
|
|
|
+ throw invalid_argument("db cannot be null");
|
|
|
|
+ }
|
|
|
|
|
|
- db_ = move(db);
|
|
|
|
- is_db_preprocessed_ = false;
|
|
|
|
|
|
+ db_ = move(db);
|
|
|
|
+ is_db_preprocessed_ = false;
|
|
}
|
|
}
|
|
|
|
|
|
-void PIRServer::set_database(const std::unique_ptr<const uint8_t[]> &bytes,
|
|
|
|
- uint64_t ele_num, uint64_t ele_size) {
|
|
|
|
|
|
+void PIRServer::set_database(const std::unique_ptr<const uint8_t[]> &bytes,
|
|
|
|
+ uint64_t ele_num, uint64_t ele_size) {
|
|
|
|
|
|
- uint32_t logt = floor(log2(enc_params_.plain_modulus().value()));
|
|
|
|
- uint32_t N = enc_params_.poly_modulus_degree();
|
|
|
|
|
|
+ uint32_t logt = floor(log2(enc_params_.plain_modulus().value()));
|
|
|
|
+ uint32_t N = enc_params_.poly_modulus_degree();
|
|
|
|
|
|
- // number of FV plaintexts needed to represent all elements
|
|
|
|
- uint64_t num_of_plaintexts = pir_params_.num_of_plaintexts;
|
|
|
|
|
|
+ // number of FV plaintexts needed to represent all elements
|
|
|
|
+ uint64_t num_of_plaintexts = pir_params_.num_of_plaintexts;
|
|
|
|
|
|
- // number of FV plaintexts needed to create the d-dimensional matrix
|
|
|
|
- uint64_t prod = 1;
|
|
|
|
- for (uint32_t i = 0; i < pir_params_.nvec.size(); i++) {
|
|
|
|
- prod *= pir_params_.nvec[i];
|
|
|
|
- }
|
|
|
|
- uint64_t matrix_plaintexts = prod;
|
|
|
|
|
|
+ // number of FV plaintexts needed to create the d-dimensional matrix
|
|
|
|
+ uint64_t prod = 1;
|
|
|
|
+ for (uint32_t i = 0; i < pir_params_.nvec.size(); i++) {
|
|
|
|
+ prod *= pir_params_.nvec[i];
|
|
|
|
+ }
|
|
|
|
+ uint64_t matrix_plaintexts = prod;
|
|
|
|
|
|
- assert(num_of_plaintexts <= matrix_plaintexts);
|
|
|
|
|
|
+ assert(num_of_plaintexts <= matrix_plaintexts);
|
|
|
|
|
|
- auto result = make_unique<vector<Plaintext>>();
|
|
|
|
- result->reserve(matrix_plaintexts);
|
|
|
|
|
|
+ auto result = make_unique<vector<Plaintext>>();
|
|
|
|
+ result->reserve(matrix_plaintexts);
|
|
|
|
|
|
- uint64_t ele_per_ptxt = pir_params_.elements_per_plaintext;
|
|
|
|
- uint64_t bytes_per_ptxt = ele_per_ptxt * ele_size;
|
|
|
|
|
|
+ uint64_t ele_per_ptxt = pir_params_.elements_per_plaintext;
|
|
|
|
+ uint64_t bytes_per_ptxt = ele_per_ptxt * ele_size;
|
|
|
|
|
|
- uint64_t db_size = ele_num * ele_size;
|
|
|
|
|
|
+ uint64_t db_size = ele_num * ele_size;
|
|
|
|
|
|
- uint64_t coeff_per_ptxt = ele_per_ptxt * coefficients_per_element(logt, ele_size);
|
|
|
|
- assert(coeff_per_ptxt <= N);
|
|
|
|
|
|
+ uint64_t coeff_per_ptxt =
|
|
|
|
+ ele_per_ptxt * coefficients_per_element(logt, ele_size);
|
|
|
|
+ assert(coeff_per_ptxt <= N);
|
|
|
|
|
|
- cout << "Elements per plaintext: " << ele_per_ptxt << endl;
|
|
|
|
- cout << "Coeff per ptxt: " << coeff_per_ptxt << endl;
|
|
|
|
- cout << "Bytes per plaintext: " << bytes_per_ptxt << endl;
|
|
|
|
|
|
+ cout << "Elements per plaintext: " << ele_per_ptxt << endl;
|
|
|
|
+ cout << "Coeff per ptxt: " << coeff_per_ptxt << endl;
|
|
|
|
+ cout << "Bytes per plaintext: " << bytes_per_ptxt << endl;
|
|
|
|
|
|
- uint32_t offset = 0;
|
|
|
|
|
|
+ uint32_t offset = 0;
|
|
|
|
|
|
- for (uint64_t i = 0; i < num_of_plaintexts; i++) {
|
|
|
|
|
|
+ for (uint64_t i = 0; i < num_of_plaintexts; i++) {
|
|
|
|
|
|
- uint64_t process_bytes = 0;
|
|
|
|
|
|
+ uint64_t process_bytes = 0;
|
|
|
|
|
|
- if (db_size <= offset) {
|
|
|
|
- break;
|
|
|
|
- } else if (db_size < offset + bytes_per_ptxt) {
|
|
|
|
- process_bytes = db_size - offset;
|
|
|
|
- } else {
|
|
|
|
- process_bytes = bytes_per_ptxt;
|
|
|
|
- }
|
|
|
|
- assert(process_bytes % ele_size == 0);
|
|
|
|
- uint64_t ele_in_chunk = process_bytes / ele_size;
|
|
|
|
-
|
|
|
|
- // Get the coefficients of the elements that will be packed in plaintext i
|
|
|
|
- vector<uint64_t> coefficients(coeff_per_ptxt);
|
|
|
|
- for(uint64_t ele = 0; ele < ele_in_chunk; ele++){
|
|
|
|
- vector<uint64_t> element_coeffs = bytes_to_coeffs(logt, bytes.get() + offset + (ele_size*ele), ele_size);
|
|
|
|
- std::copy(element_coeffs.begin(), element_coeffs.end(), coefficients.begin() + (coefficients_per_element(logt, ele_size) * ele));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- offset += process_bytes;
|
|
|
|
|
|
+ if (db_size <= offset) {
|
|
|
|
+ break;
|
|
|
|
+ } else if (db_size < offset + bytes_per_ptxt) {
|
|
|
|
+ process_bytes = db_size - offset;
|
|
|
|
+ } else {
|
|
|
|
+ process_bytes = bytes_per_ptxt;
|
|
|
|
+ }
|
|
|
|
+ assert(process_bytes % ele_size == 0);
|
|
|
|
+ uint64_t ele_in_chunk = process_bytes / ele_size;
|
|
|
|
+
|
|
|
|
+ // Get the coefficients of the elements that will be packed in plaintext i
|
|
|
|
+ vector<uint64_t> coefficients(coeff_per_ptxt);
|
|
|
|
+ for (uint64_t ele = 0; ele < ele_in_chunk; ele++) {
|
|
|
|
+ vector<uint64_t> element_coeffs = bytes_to_coeffs(
|
|
|
|
+ logt, bytes.get() + offset + (ele_size * ele), ele_size);
|
|
|
|
+ std::copy(element_coeffs.begin(), element_coeffs.end(),
|
|
|
|
+ coefficients.begin() +
|
|
|
|
+ (coefficients_per_element(logt, ele_size) * ele));
|
|
|
|
+ }
|
|
|
|
|
|
- uint64_t used = coefficients.size();
|
|
|
|
|
|
+ offset += process_bytes;
|
|
|
|
|
|
- assert(used <= coeff_per_ptxt);
|
|
|
|
|
|
+ uint64_t used = coefficients.size();
|
|
|
|
|
|
- // Pad the rest with 1s
|
|
|
|
- for (uint64_t j = 0; j < (pir_params_.slot_count - used); j++) {
|
|
|
|
- coefficients.push_back(1);
|
|
|
|
- }
|
|
|
|
|
|
+ assert(used <= coeff_per_ptxt);
|
|
|
|
|
|
- Plaintext plain;
|
|
|
|
- encoder_->encode(coefficients, plain);
|
|
|
|
- // cout << i << "-th encoded plaintext = " << plain.to_string() << endl;
|
|
|
|
- result->push_back(move(plain));
|
|
|
|
|
|
+ // Pad the rest with 1s
|
|
|
|
+ for (uint64_t j = 0; j < (pir_params_.slot_count - used); j++) {
|
|
|
|
+ coefficients.push_back(1);
|
|
}
|
|
}
|
|
|
|
|
|
- // Add padding to make database a matrix
|
|
|
|
- uint64_t current_plaintexts = result->size();
|
|
|
|
- assert(current_plaintexts <= num_of_plaintexts);
|
|
|
|
|
|
+ Plaintext plain;
|
|
|
|
+ encoder_->encode(coefficients, plain);
|
|
|
|
+ // cout << i << "-th encoded plaintext = " << plain.to_string() << endl;
|
|
|
|
+ result->push_back(move(plain));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Add padding to make database a matrix
|
|
|
|
+ uint64_t current_plaintexts = result->size();
|
|
|
|
+ assert(current_plaintexts <= num_of_plaintexts);
|
|
|
|
|
|
#ifdef DEBUG
|
|
#ifdef DEBUG
|
|
- cout << "adding: " << matrix_plaintexts - current_plaintexts
|
|
|
|
- << " FV plaintexts of padding (equivalent to: "
|
|
|
|
- << (matrix_plaintexts - current_plaintexts) * elements_per_ptxt(logtp, N, ele_size)
|
|
|
|
- << " elements)" << endl;
|
|
|
|
|
|
+ cout << "adding: " << matrix_plaintexts - current_plaintexts
|
|
|
|
+ << " FV plaintexts of padding (equivalent to: "
|
|
|
|
+ << (matrix_plaintexts - current_plaintexts) *
|
|
|
|
+ elements_per_ptxt(logtp, N, ele_size)
|
|
|
|
+ << " elements)" << endl;
|
|
#endif
|
|
#endif
|
|
|
|
|
|
- vector<uint64_t> padding(N, 1);
|
|
|
|
|
|
+ vector<uint64_t> padding(N, 1);
|
|
|
|
|
|
- for (uint64_t i = 0; i < (matrix_plaintexts - current_plaintexts); i++) {
|
|
|
|
- Plaintext plain;
|
|
|
|
- vector_to_plaintext(padding, plain);
|
|
|
|
- result->push_back(plain);
|
|
|
|
- }
|
|
|
|
|
|
+ for (uint64_t i = 0; i < (matrix_plaintexts - current_plaintexts); i++) {
|
|
|
|
+ Plaintext plain;
|
|
|
|
+ vector_to_plaintext(padding, plain);
|
|
|
|
+ result->push_back(plain);
|
|
|
|
+ }
|
|
|
|
|
|
- set_database(move(result));
|
|
|
|
|
|
+ set_database(move(result));
|
|
}
|
|
}
|
|
|
|
|
|
void PIRServer::set_galois_key(uint32_t client_id, seal::GaloisKeys galkey) {
|
|
void PIRServer::set_galois_key(uint32_t client_id, seal::GaloisKeys galkey) {
|
|
- galoisKeys_[client_id] = galkey;
|
|
|
|
|
|
+ galoisKeys_[client_id] = galkey;
|
|
}
|
|
}
|
|
|
|
|
|
PirQuery PIRServer::deserialize_query(stringstream &stream) {
|
|
PirQuery PIRServer::deserialize_query(stringstream &stream) {
|
|
- PirQuery q;
|
|
|
|
-
|
|
|
|
- for (uint32_t i = 0; i < pir_params_.d; i++) {
|
|
|
|
- // number of ciphertexts needed to encode the index for dimension i
|
|
|
|
- // keeping into account that each ciphertext can encode up to poly_modulus_degree indexes
|
|
|
|
- // In most cases this is usually 1.
|
|
|
|
- uint32_t ctx_per_dimension = ceil((pir_params_.nvec[i] + 0.0) / enc_params_.poly_modulus_degree());
|
|
|
|
-
|
|
|
|
- vector<Ciphertext> cs;
|
|
|
|
- for (uint32_t j = 0; j < ctx_per_dimension; j++) {
|
|
|
|
- Ciphertext c;
|
|
|
|
- c.load(*context_, stream);
|
|
|
|
- cs.push_back(c);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- q.push_back(cs);
|
|
|
|
|
|
+ PirQuery q;
|
|
|
|
+
|
|
|
|
+ for (uint32_t i = 0; i < pir_params_.d; i++) {
|
|
|
|
+ // number of ciphertexts needed to encode the index for dimension i
|
|
|
|
+ // keeping into account that each ciphertext can encode up to
|
|
|
|
+ // poly_modulus_degree indexes In most cases this is usually 1.
|
|
|
|
+ uint32_t ctx_per_dimension =
|
|
|
|
+ ceil((pir_params_.nvec[i] + 0.0) / enc_params_.poly_modulus_degree());
|
|
|
|
+
|
|
|
|
+ vector<Ciphertext> cs;
|
|
|
|
+ for (uint32_t j = 0; j < ctx_per_dimension; j++) {
|
|
|
|
+ Ciphertext c;
|
|
|
|
+ c.load(*context_, stream);
|
|
|
|
+ cs.push_back(c);
|
|
}
|
|
}
|
|
|
|
|
|
- return q;
|
|
|
|
|
|
+ q.push_back(cs);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return q;
|
|
}
|
|
}
|
|
|
|
|
|
int PIRServer::serialize_reply(PirReply &reply, stringstream &stream) {
|
|
int PIRServer::serialize_reply(PirReply &reply, stringstream &stream) {
|
|
- int output_size = 0;
|
|
|
|
- for (int i = 0; i < reply.size(); i++){
|
|
|
|
- evaluator_->mod_switch_to_inplace(reply[i], context_->last_parms_id());
|
|
|
|
- output_size += reply[i].save(stream);
|
|
|
|
- }
|
|
|
|
- return output_size;
|
|
|
|
|
|
+ int output_size = 0;
|
|
|
|
+ for (int i = 0; i < reply.size(); i++) {
|
|
|
|
+ evaluator_->mod_switch_to_inplace(reply[i], context_->last_parms_id());
|
|
|
|
+ output_size += reply[i].save(stream);
|
|
|
|
+ }
|
|
|
|
+ return output_size;
|
|
}
|
|
}
|
|
|
|
|
|
PirReply PIRServer::generate_reply(PirQuery &query, uint32_t client_id) {
|
|
PirReply PIRServer::generate_reply(PirQuery &query, uint32_t client_id) {
|
|
|
|
|
|
- vector<uint64_t> nvec = pir_params_.nvec;
|
|
|
|
- uint64_t product = 1;
|
|
|
|
|
|
+ vector<uint64_t> nvec = pir_params_.nvec;
|
|
|
|
+ uint64_t product = 1;
|
|
|
|
|
|
- for (uint32_t i = 0; i < nvec.size(); i++) {
|
|
|
|
- product *= nvec[i];
|
|
|
|
- }
|
|
|
|
|
|
+ for (uint32_t i = 0; i < nvec.size(); i++) {
|
|
|
|
+ product *= nvec[i];
|
|
|
|
+ }
|
|
|
|
|
|
- auto coeff_count = enc_params_.poly_modulus_degree();
|
|
|
|
|
|
+ auto coeff_count = enc_params_.poly_modulus_degree();
|
|
|
|
|
|
- vector<Plaintext> *cur = db_.get();
|
|
|
|
- vector<Plaintext> intermediate_plain; // decompose....
|
|
|
|
|
|
+ vector<Plaintext> *cur = db_.get();
|
|
|
|
+ vector<Plaintext> intermediate_plain; // decompose....
|
|
|
|
|
|
- auto pool = MemoryManager::GetPool();
|
|
|
|
|
|
+ auto pool = MemoryManager::GetPool();
|
|
|
|
|
|
|
|
+ int N = enc_params_.poly_modulus_degree();
|
|
|
|
|
|
- int N = enc_params_.poly_modulus_degree();
|
|
|
|
|
|
+ int logt = floor(log2(enc_params_.plain_modulus().value()));
|
|
|
|
|
|
- int logt = floor(log2(enc_params_.plain_modulus().value()));
|
|
|
|
|
|
+ for (uint32_t i = 0; i < nvec.size(); i++) {
|
|
|
|
+ cout << "Server: " << i + 1 << "-th recursion level started " << endl;
|
|
|
|
|
|
- for (uint32_t i = 0; i < nvec.size(); i++) {
|
|
|
|
- cout << "Server: " << i + 1 << "-th recursion level started " << endl;
|
|
|
|
|
|
+ vector<Ciphertext> expanded_query;
|
|
|
|
|
|
|
|
+ uint64_t n_i = nvec[i];
|
|
|
|
+ cout << "Server: n_i = " << n_i << endl;
|
|
|
|
+ cout << "Server: expanding " << query[i].size() << " query ctxts" << endl;
|
|
|
|
+ for (uint32_t j = 0; j < query[i].size(); j++) {
|
|
|
|
+ uint64_t total = N;
|
|
|
|
+ if (j == query[i].size() - 1) {
|
|
|
|
+ total = n_i % N;
|
|
|
|
+ }
|
|
|
|
+ cout << "-- expanding one query ctxt into " << total << " ctxts " << endl;
|
|
|
|
+ vector<Ciphertext> expanded_query_part =
|
|
|
|
+ expand_query(query[i][j], total, client_id);
|
|
|
|
+ expanded_query.insert(
|
|
|
|
+ expanded_query.end(),
|
|
|
|
+ std::make_move_iterator(expanded_query_part.begin()),
|
|
|
|
+ std::make_move_iterator(expanded_query_part.end()));
|
|
|
|
+ expanded_query_part.clear();
|
|
|
|
+ }
|
|
|
|
+ cout << "Server: expansion done " << endl;
|
|
|
|
+ if (expanded_query.size() != n_i) {
|
|
|
|
+ cout << " size mismatch!!! " << expanded_query.size() << ", " << n_i
|
|
|
|
+ << endl;
|
|
|
|
+ }
|
|
|
|
|
|
- vector<Ciphertext> expanded_query;
|
|
|
|
-
|
|
|
|
- uint64_t n_i = nvec[i];
|
|
|
|
- cout << "Server: n_i = " << n_i << endl;
|
|
|
|
- cout << "Server: expanding " << query[i].size() << " query ctxts" << endl;
|
|
|
|
- for (uint32_t j = 0; j < query[i].size(); j++){
|
|
|
|
- uint64_t total = N;
|
|
|
|
- if (j == query[i].size() - 1){
|
|
|
|
- total = n_i % N;
|
|
|
|
- }
|
|
|
|
- cout << "-- expanding one query ctxt into " << total << " ctxts "<< endl;
|
|
|
|
- vector<Ciphertext> expanded_query_part = expand_query(query[i][j], total, client_id);
|
|
|
|
- expanded_query.insert(expanded_query.end(), std::make_move_iterator(expanded_query_part.begin()),
|
|
|
|
- std::make_move_iterator(expanded_query_part.end()));
|
|
|
|
- expanded_query_part.clear();
|
|
|
|
- }
|
|
|
|
- cout << "Server: expansion done " << endl;
|
|
|
|
- if (expanded_query.size() != n_i) {
|
|
|
|
- cout << " size mismatch!!! " << expanded_query.size() << ", " << n_i << endl;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Transform expanded query to NTT, and ...
|
|
|
|
- for (uint32_t jj = 0; jj < expanded_query.size(); jj++) {
|
|
|
|
- evaluator_->transform_to_ntt_inplace(expanded_query[jj]);
|
|
|
|
- }
|
|
|
|
|
|
+ // Transform expanded query to NTT, and ...
|
|
|
|
+ for (uint32_t jj = 0; jj < expanded_query.size(); jj++) {
|
|
|
|
+ evaluator_->transform_to_ntt_inplace(expanded_query[jj]);
|
|
|
|
+ }
|
|
|
|
|
|
- // Transform plaintext to NTT. If database is pre-processed, can skip
|
|
|
|
- if ((!is_db_preprocessed_) || i > 0) {
|
|
|
|
- for (uint32_t jj = 0; jj < cur->size(); jj++) {
|
|
|
|
- evaluator_->transform_to_ntt_inplace((*cur)[jj], context_->first_parms_id());
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
|
|
+ // Transform plaintext to NTT. If database is pre-processed, can skip
|
|
|
|
+ if ((!is_db_preprocessed_) || i > 0) {
|
|
|
|
+ for (uint32_t jj = 0; jj < cur->size(); jj++) {
|
|
|
|
+ evaluator_->transform_to_ntt_inplace((*cur)[jj],
|
|
|
|
+ context_->first_parms_id());
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
- for (uint64_t k = 0; k < product; k++) {
|
|
|
|
- if ((*cur)[k].is_zero()){
|
|
|
|
- cout << k + 1 << "/ " << product << "-th ptxt = 0 " << endl;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
|
|
+ for (uint64_t k = 0; k < product; k++) {
|
|
|
|
+ if ((*cur)[k].is_zero()) {
|
|
|
|
+ cout << k + 1 << "/ " << product << "-th ptxt = 0 " << endl;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
- product /= n_i;
|
|
|
|
|
|
+ product /= n_i;
|
|
|
|
|
|
- vector<Ciphertext> intermediateCtxts(product);
|
|
|
|
- Ciphertext temp;
|
|
|
|
|
|
+ vector<Ciphertext> intermediateCtxts(product);
|
|
|
|
+ Ciphertext temp;
|
|
|
|
|
|
- for (uint64_t k = 0; k < product; k++) {
|
|
|
|
|
|
+ for (uint64_t k = 0; k < product; k++) {
|
|
|
|
|
|
- evaluator_->multiply_plain(expanded_query[0], (*cur)[k], intermediateCtxts[k]);
|
|
|
|
|
|
+ evaluator_->multiply_plain(expanded_query[0], (*cur)[k],
|
|
|
|
+ intermediateCtxts[k]);
|
|
|
|
|
|
- for (uint64_t j = 1; j < n_i; j++) {
|
|
|
|
- evaluator_->multiply_plain(expanded_query[j], (*cur)[k + j * product], temp);
|
|
|
|
- evaluator_->add_inplace(intermediateCtxts[k], temp); // Adds to first component.
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
|
|
+ for (uint64_t j = 1; j < n_i; j++) {
|
|
|
|
+ evaluator_->multiply_plain(expanded_query[j], (*cur)[k + j * product],
|
|
|
|
+ temp);
|
|
|
|
+ evaluator_->add_inplace(intermediateCtxts[k],
|
|
|
|
+ temp); // Adds to first component.
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
- for (uint32_t jj = 0; jj < intermediateCtxts.size(); jj++) {
|
|
|
|
- evaluator_->transform_from_ntt_inplace(intermediateCtxts[jj]);
|
|
|
|
- // print intermediate ctxts?
|
|
|
|
- //cout << "const term of ctxt " << jj << " = " << intermediateCtxts[jj][0] << endl;
|
|
|
|
- }
|
|
|
|
|
|
+ for (uint32_t jj = 0; jj < intermediateCtxts.size(); jj++) {
|
|
|
|
+ evaluator_->transform_from_ntt_inplace(intermediateCtxts[jj]);
|
|
|
|
+ // print intermediate ctxts?
|
|
|
|
+ // cout << "const term of ctxt " << jj << " = " <<
|
|
|
|
+ // intermediateCtxts[jj][0] << endl;
|
|
|
|
+ }
|
|
|
|
|
|
- if (i == nvec.size() - 1) {
|
|
|
|
- return intermediateCtxts;
|
|
|
|
|
|
+ if (i == nvec.size() - 1) {
|
|
|
|
+ return intermediateCtxts;
|
|
|
|
+ } else {
|
|
|
|
+ intermediate_plain.clear();
|
|
|
|
+ intermediate_plain.reserve(pir_params_.expansion_ratio * product);
|
|
|
|
+ cur = &intermediate_plain;
|
|
|
|
+
|
|
|
|
+ for (uint64_t rr = 0; rr < product; rr++) {
|
|
|
|
+ EncryptionParameters parms;
|
|
|
|
+ if (pir_params_.enable_mswitching) {
|
|
|
|
+ evaluator_->mod_switch_to_inplace(intermediateCtxts[rr],
|
|
|
|
+ context_->last_parms_id());
|
|
|
|
+ parms = context_->last_context_data()->parms();
|
|
} else {
|
|
} else {
|
|
- intermediate_plain.clear();
|
|
|
|
- intermediate_plain.reserve(pir_params_.expansion_ratio * product);
|
|
|
|
- cur = &intermediate_plain;
|
|
|
|
-
|
|
|
|
- for (uint64_t rr = 0; rr < product; rr++) {
|
|
|
|
- EncryptionParameters parms;
|
|
|
|
- if(pir_params_.enable_mswitching){
|
|
|
|
- evaluator_->mod_switch_to_inplace(intermediateCtxts[rr], context_->last_parms_id());
|
|
|
|
- parms = context_->last_context_data()->parms();
|
|
|
|
- }
|
|
|
|
- else{
|
|
|
|
- parms = context_->first_context_data()->parms();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- vector<Plaintext> plains = decompose_to_plaintexts(parms,
|
|
|
|
- intermediateCtxts[rr]);
|
|
|
|
-
|
|
|
|
- for (uint32_t jj = 0; jj < plains.size(); jj++) {
|
|
|
|
- intermediate_plain.emplace_back(plains[jj]);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- product = intermediate_plain.size(); // multiply by expansion rate.
|
|
|
|
|
|
+ parms = context_->first_context_data()->parms();
|
|
}
|
|
}
|
|
- cout << "Server: " << i + 1 << "-th recursion level finished " << endl;
|
|
|
|
- cout << endl;
|
|
|
|
- }
|
|
|
|
- cout << "reply generated! " << endl;
|
|
|
|
- // This should never get here
|
|
|
|
- assert(0);
|
|
|
|
- vector<Ciphertext> fail(1);
|
|
|
|
- return fail;
|
|
|
|
-}
|
|
|
|
|
|
|
|
-inline vector<Ciphertext> PIRServer::expand_query(const Ciphertext &encrypted, uint32_t m,
|
|
|
|
- uint32_t client_id) {
|
|
|
|
|
|
+ vector<Plaintext> plains =
|
|
|
|
+ decompose_to_plaintexts(parms, intermediateCtxts[rr]);
|
|
|
|
|
|
- GaloisKeys &galkey = galoisKeys_[client_id];
|
|
|
|
-
|
|
|
|
- // Assume that m is a power of 2. If not, round it to the next power of 2.
|
|
|
|
- uint32_t logm = ceil(log2(m));
|
|
|
|
- Plaintext two("2");
|
|
|
|
-
|
|
|
|
- vector<int> galois_elts;
|
|
|
|
- auto n = enc_params_.poly_modulus_degree();
|
|
|
|
- if (logm > ceil(log2(n))){
|
|
|
|
- throw logic_error("m > n is not allowed.");
|
|
|
|
- }
|
|
|
|
- for (int i = 0; i < ceil(log2(n)); i++) {
|
|
|
|
- galois_elts.push_back((n + exponentiate_uint(2, i)) / exponentiate_uint(2, i));
|
|
|
|
|
|
+ for (uint32_t jj = 0; jj < plains.size(); jj++) {
|
|
|
|
+ intermediate_plain.emplace_back(plains[jj]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ product = intermediate_plain.size(); // multiply by expansion rate.
|
|
}
|
|
}
|
|
|
|
+ cout << "Server: " << i + 1 << "-th recursion level finished " << endl;
|
|
|
|
+ cout << endl;
|
|
|
|
+ }
|
|
|
|
+ cout << "reply generated! " << endl;
|
|
|
|
+ // This should never get here
|
|
|
|
+ assert(0);
|
|
|
|
+ vector<Ciphertext> fail(1);
|
|
|
|
+ return fail;
|
|
|
|
+}
|
|
|
|
|
|
- vector<Ciphertext> temp;
|
|
|
|
- temp.push_back(encrypted);
|
|
|
|
- Ciphertext tempctxt;
|
|
|
|
- Ciphertext tempctxt_rotated;
|
|
|
|
- Ciphertext tempctxt_shifted;
|
|
|
|
- Ciphertext tempctxt_rotatedshifted;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- for (uint32_t i = 0; i < logm - 1; i++) {
|
|
|
|
- vector<Ciphertext> newtemp(temp.size() << 1);
|
|
|
|
- // temp[a] = (j0 = a (mod 2**i) ? ) : Enc(x^{j0 - a}) else Enc(0). With
|
|
|
|
- // some scaling....
|
|
|
|
- int index_raw = (n << 1) - (1 << i);
|
|
|
|
- int index = (index_raw * galois_elts[i]) % (n << 1);
|
|
|
|
-
|
|
|
|
- for (uint32_t a = 0; a < temp.size(); a++) {
|
|
|
|
-
|
|
|
|
- evaluator_->apply_galois(temp[a], galois_elts[i], galkey, tempctxt_rotated);
|
|
|
|
|
|
+inline vector<Ciphertext> PIRServer::expand_query(const Ciphertext &encrypted,
|
|
|
|
+ uint32_t m,
|
|
|
|
+ uint32_t client_id) {
|
|
|
|
+
|
|
|
|
+ GaloisKeys &galkey = galoisKeys_[client_id];
|
|
|
|
+
|
|
|
|
+ // Assume that m is a power of 2. If not, round it to the next power of 2.
|
|
|
|
+ uint32_t logm = ceil(log2(m));
|
|
|
|
+ Plaintext two("2");
|
|
|
|
+
|
|
|
|
+ vector<int> galois_elts;
|
|
|
|
+ auto n = enc_params_.poly_modulus_degree();
|
|
|
|
+ if (logm > ceil(log2(n))) {
|
|
|
|
+ throw logic_error("m > n is not allowed.");
|
|
|
|
+ }
|
|
|
|
+ for (int i = 0; i < ceil(log2(n)); i++) {
|
|
|
|
+ galois_elts.push_back((n + exponentiate_uint(2, i)) /
|
|
|
|
+ exponentiate_uint(2, i));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ vector<Ciphertext> temp;
|
|
|
|
+ temp.push_back(encrypted);
|
|
|
|
+ Ciphertext tempctxt;
|
|
|
|
+ Ciphertext tempctxt_rotated;
|
|
|
|
+ Ciphertext tempctxt_shifted;
|
|
|
|
+ Ciphertext tempctxt_rotatedshifted;
|
|
|
|
+
|
|
|
|
+ for (uint32_t i = 0; i < logm - 1; i++) {
|
|
|
|
+ vector<Ciphertext> newtemp(temp.size() << 1);
|
|
|
|
+ // temp[a] = (j0 = a (mod 2**i) ? ) : Enc(x^{j0 - a}) else Enc(0). With
|
|
|
|
+ // some scaling....
|
|
|
|
+ int index_raw = (n << 1) - (1 << i);
|
|
|
|
+ int index = (index_raw * galois_elts[i]) % (n << 1);
|
|
|
|
|
|
- //cout << "rotate " << client.decryptor_->invariant_noise_budget(tempctxt_rotated) << ", ";
|
|
|
|
|
|
+ for (uint32_t a = 0; a < temp.size(); a++) {
|
|
|
|
|
|
- evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
|
|
|
|
- multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
|
|
|
|
|
|
+ evaluator_->apply_galois(temp[a], galois_elts[i], galkey,
|
|
|
|
+ tempctxt_rotated);
|
|
|
|
|
|
- //cout << "mul by x^pow: " << client.decryptor_->invariant_noise_budget(tempctxt_shifted) << ", ";
|
|
|
|
|
|
+ // cout << "rotate " <<
|
|
|
|
+ // client.decryptor_->invariant_noise_budget(tempctxt_rotated) << ", ";
|
|
|
|
|
|
|
|
+ evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
|
|
|
|
+ multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
|
|
|
|
|
|
- multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
|
|
|
|
|
|
+ // cout << "mul by x^pow: " <<
|
|
|
|
+ // client.decryptor_->invariant_noise_budget(tempctxt_shifted) << ", ";
|
|
|
|
|
|
- // cout << "mul by x^pow: " << client.decryptor_->invariant_noise_budget(tempctxt_rotatedshifted) << ", ";
|
|
|
|
|
|
+ multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
|
|
|
|
|
|
|
|
+ // cout << "mul by x^pow: " <<
|
|
|
|
+ // client.decryptor_->invariant_noise_budget(tempctxt_rotatedshifted) <<
|
|
|
|
+ // ", ";
|
|
|
|
|
|
- // Enc(2^i x^j) if j = 0 (mod 2**i).
|
|
|
|
- evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted, newtemp[a + temp.size()]);
|
|
|
|
- }
|
|
|
|
- temp = newtemp;
|
|
|
|
- /*
|
|
|
|
- cout << "end: ";
|
|
|
|
- for (int h = 0; h < temp.size();h++){
|
|
|
|
- cout << client.decryptor_->invariant_noise_budget(temp[h]) << ", ";
|
|
|
|
- }
|
|
|
|
- cout << endl;
|
|
|
|
- */
|
|
|
|
|
|
+ // Enc(2^i x^j) if j = 0 (mod 2**i).
|
|
|
|
+ evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted,
|
|
|
|
+ newtemp[a + temp.size()]);
|
|
}
|
|
}
|
|
- // Last step of the loop
|
|
|
|
- vector<Ciphertext> newtemp(temp.size() << 1);
|
|
|
|
- int index_raw = (n << 1) - (1 << (logm - 1));
|
|
|
|
- int index = (index_raw * galois_elts[logm - 1]) % (n << 1);
|
|
|
|
- for (uint32_t a = 0; a < temp.size(); a++) {
|
|
|
|
- if (a >= (m - (1 << (logm - 1)))) { // corner case.
|
|
|
|
- evaluator_->multiply_plain(temp[a], two, newtemp[a]); // plain multiplication by 2.
|
|
|
|
- // cout << client.decryptor_->invariant_noise_budget(newtemp[a]) << ", ";
|
|
|
|
- } else {
|
|
|
|
- evaluator_->apply_galois(temp[a], galois_elts[logm - 1], galkey, tempctxt_rotated);
|
|
|
|
- evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
|
|
|
|
- multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
|
|
|
|
- multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
|
|
|
|
- evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted, newtemp[a + temp.size()]);
|
|
|
|
- }
|
|
|
|
|
|
+ temp = newtemp;
|
|
|
|
+ /*
|
|
|
|
+ cout << "end: ";
|
|
|
|
+ for (int h = 0; h < temp.size();h++){
|
|
|
|
+ cout << client.decryptor_->invariant_noise_budget(temp[h]) << ", ";
|
|
}
|
|
}
|
|
|
|
+ cout << endl;
|
|
|
|
+ */
|
|
|
|
+ }
|
|
|
|
+ // Last step of the loop
|
|
|
|
+ vector<Ciphertext> newtemp(temp.size() << 1);
|
|
|
|
+ int index_raw = (n << 1) - (1 << (logm - 1));
|
|
|
|
+ int index = (index_raw * galois_elts[logm - 1]) % (n << 1);
|
|
|
|
+ for (uint32_t a = 0; a < temp.size(); a++) {
|
|
|
|
+ if (a >= (m - (1 << (logm - 1)))) { // corner case.
|
|
|
|
+ evaluator_->multiply_plain(temp[a], two,
|
|
|
|
+ newtemp[a]); // plain multiplication by 2.
|
|
|
|
+ // cout << client.decryptor_->invariant_noise_budget(newtemp[a]) << ", ";
|
|
|
|
+ } else {
|
|
|
|
+ evaluator_->apply_galois(temp[a], galois_elts[logm - 1], galkey,
|
|
|
|
+ tempctxt_rotated);
|
|
|
|
+ evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
|
|
|
|
+ multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
|
|
|
|
+ multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
|
|
|
|
+ evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted,
|
|
|
|
+ newtemp[a + temp.size()]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
- vector<Ciphertext>::const_iterator first = newtemp.begin();
|
|
|
|
- vector<Ciphertext>::const_iterator last = newtemp.begin() + m;
|
|
|
|
- vector<Ciphertext> newVec(first, last);
|
|
|
|
|
|
+ vector<Ciphertext>::const_iterator first = newtemp.begin();
|
|
|
|
+ vector<Ciphertext>::const_iterator last = newtemp.begin() + m;
|
|
|
|
+ vector<Ciphertext> newVec(first, last);
|
|
|
|
|
|
- return newVec;
|
|
|
|
|
|
+ return newVec;
|
|
}
|
|
}
|
|
|
|
|
|
-inline void PIRServer::multiply_power_of_X(const Ciphertext &encrypted, Ciphertext &destination,
|
|
|
|
- uint32_t index) {
|
|
|
|
|
|
+inline void PIRServer::multiply_power_of_X(const Ciphertext &encrypted,
|
|
|
|
+ Ciphertext &destination,
|
|
|
|
+ uint32_t index) {
|
|
|
|
|
|
- auto coeff_mod_count = enc_params_.coeff_modulus().size() - 1;
|
|
|
|
- auto coeff_count = enc_params_.poly_modulus_degree();
|
|
|
|
- auto encrypted_count = encrypted.size();
|
|
|
|
|
|
+ auto coeff_mod_count = enc_params_.coeff_modulus().size() - 1;
|
|
|
|
+ auto coeff_count = enc_params_.poly_modulus_degree();
|
|
|
|
+ auto encrypted_count = encrypted.size();
|
|
|
|
|
|
- //cout << "coeff mod count for power of X = " << coeff_mod_count << endl;
|
|
|
|
- //cout << "coeff count for power of X = " << coeff_count << endl;
|
|
|
|
|
|
+ // cout << "coeff mod count for power of X = " << coeff_mod_count << endl;
|
|
|
|
+ // cout << "coeff count for power of X = " << coeff_count << endl;
|
|
|
|
|
|
- // First copy over.
|
|
|
|
- destination = encrypted;
|
|
|
|
|
|
+ // First copy over.
|
|
|
|
+ destination = encrypted;
|
|
|
|
|
|
- // Prepare for destination
|
|
|
|
- // Multiply X^index for each ciphertext polynomial
|
|
|
|
- for (int i = 0; i < encrypted_count; i++) {
|
|
|
|
- for (int j = 0; j < coeff_mod_count; j++) {
|
|
|
|
- negacyclic_shift_poly_coeffmod(encrypted.data(i) + (j * coeff_count),
|
|
|
|
- coeff_count, index,
|
|
|
|
- enc_params_.coeff_modulus()[j],
|
|
|
|
- destination.data(i) + (j * coeff_count));
|
|
|
|
- }
|
|
|
|
|
|
+ // Prepare for destination
|
|
|
|
+ // Multiply X^index for each ciphertext polynomial
|
|
|
|
+ for (int i = 0; i < encrypted_count; i++) {
|
|
|
|
+ for (int j = 0; j < coeff_mod_count; j++) {
|
|
|
|
+ negacyclic_shift_poly_coeffmod(encrypted.data(i) + (j * coeff_count),
|
|
|
|
+ coeff_count, index,
|
|
|
|
+ enc_params_.coeff_modulus()[j],
|
|
|
|
+ destination.data(i) + (j * coeff_count));
|
|
}
|
|
}
|
|
|
|
+ }
|
|
}
|
|
}
|
|
|
|
|
|
-void PIRServer::simple_set(uint64_t index, Plaintext pt){
|
|
|
|
- if(is_db_preprocessed_){
|
|
|
|
- evaluator_->transform_to_ntt_inplace(
|
|
|
|
- pt, context_->first_parms_id());
|
|
|
|
- }
|
|
|
|
- db_->operator[](index) = pt;
|
|
|
|
|
|
+void PIRServer::simple_set(uint64_t index, Plaintext pt) {
|
|
|
|
+ if (is_db_preprocessed_) {
|
|
|
|
+ evaluator_->transform_to_ntt_inplace(pt, context_->first_parms_id());
|
|
|
|
+ }
|
|
|
|
+ db_->operator[](index) = pt;
|
|
}
|
|
}
|
|
|
|
|
|
-Ciphertext PIRServer::simple_query(uint64_t index){
|
|
|
|
- //There is no transform_from_ntt that takes a plaintext
|
|
|
|
- Ciphertext ct;
|
|
|
|
- Plaintext pt = db_->operator[](index);
|
|
|
|
- evaluator_->multiply_plain(one_, pt, ct);
|
|
|
|
- evaluator_->transform_from_ntt_inplace(ct);
|
|
|
|
- return ct;
|
|
|
|
|
|
+Ciphertext PIRServer::simple_query(uint64_t index) {
|
|
|
|
+ // There is no transform_from_ntt that takes a plaintext
|
|
|
|
+ Ciphertext ct;
|
|
|
|
+ Plaintext pt = db_->operator[](index);
|
|
|
|
+ evaluator_->multiply_plain(one_, pt, ct);
|
|
|
|
+ evaluator_->transform_from_ntt_inplace(ct);
|
|
|
|
+ return ct;
|
|
}
|
|
}
|
|
|
|
|
|
-void PIRServer::set_one_ct(Ciphertext one){
|
|
|
|
- one_ = one;
|
|
|
|
- evaluator_->transform_to_ntt_inplace(one_);
|
|
|
|
|
|
+void PIRServer::set_one_ct(Ciphertext one) {
|
|
|
|
+ one_ = one;
|
|
|
|
+ evaluator_->transform_to_ntt_inplace(one_);
|
|
}
|
|
}
|