123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- #include "pir_client.hpp"
- using namespace std;
- using namespace seal;
- using namespace seal::util;
- PIRClient::PIRClient(const EncryptionParameters &enc_params,
- const PirParams &pir_params) :
- enc_params_(enc_params),
- pir_params_(pir_params){
- context_ = make_shared<SEALContext>(enc_params, true);
- keygen_ = make_unique<KeyGenerator>(*context_);
-
- PublicKey public_key;
- keygen_->create_public_key(public_key);
- SecretKey secret_key = keygen_->secret_key();
- if(pir_params_.enable_symmetric){
- encryptor_ = make_unique<Encryptor>(*context_, secret_key);
- }
- else{
- encryptor_ = make_unique<Encryptor>(*context_, public_key);
- }
-
- decryptor_ = make_unique<Decryptor>(*context_, secret_key);
- evaluator_ = make_unique<Evaluator>(*context_);
- encoder_ = make_unique<BatchEncoder>(*context_);
- }
- PirQuery PIRClient::generate_query(uint64_t desiredIndex) {
- indices_ = compute_indices(desiredIndex, pir_params_.nvec);
- vector<vector<Ciphertext> > result(pir_params_.d);
- int N = enc_params_.poly_modulus_degree();
- Plaintext pt(enc_params_.poly_modulus_degree());
- for (uint32_t i = 0; i < indices_.size(); i++) {
- uint32_t num_ptxts = ceil( (pir_params_.nvec[i] + 0.0) / N);
- // initialize result.
- cout << "Client: index " << i + 1 << "/ " << indices_.size() << " = " << indices_[i] << endl;
- cout << "Client: number of ctxts needed for query = " << num_ptxts << endl;
-
- for (uint32_t j =0; j < num_ptxts; j++){
- pt.set_zero();
- if (indices_[i] >= N*j && indices_[i] <= N*(j+1)){
- uint64_t real_index = indices_[i] - N*j;
- uint64_t n_i = pir_params_.nvec[i];
- uint64_t total = N;
- if (j == num_ptxts - 1){
- total = n_i % N;
- }
- uint64_t log_total = ceil(log2(total));
- cout << "Client: Inverting " << pow(2, log_total) << endl;
- pt[real_index] = invert_mod(pow(2, log_total), enc_params_.plain_modulus());
- }
- Ciphertext dest;
- if(pir_params_.enable_symmetric){
- encryptor_->encrypt_symmetric(pt, dest);
- }
- else{
- encryptor_->encrypt(pt, dest);
- }
- result[i].push_back(dest);
- }
- }
- return result;
- }
- uint64_t PIRClient::get_fv_index(uint64_t element_index) {
- return static_cast<uint64_t>(element_index / pir_params_.elements_per_plaintext);
- }
- uint64_t PIRClient::get_fv_offset(uint64_t element_index) {
- return element_index % pir_params_.elements_per_plaintext;
- }
- Plaintext PIRClient::decrypt(Ciphertext ct){
- Plaintext pt;
- decryptor_->decrypt(ct, pt);
- return pt;
- }
- vector<uint8_t> PIRClient::decode_reply(PirReply reply, uint64_t offset){
- Plaintext result = decode_reply(reply);
-
- uint32_t N = enc_params_.poly_modulus_degree();
- uint32_t logt = floor(log2(enc_params_.plain_modulus().value()));
- // Convert from FV plaintext (polynomial) to database element at the client
- vector<uint8_t> elems(N * logt / 8);
- vector<uint64_t> coeffs;
- encoder_->decode(result, coeffs);
- coeffs_to_bytes(logt, coeffs, elems.data(), (N * logt) / 8);
- return std::vector<uint8_t>(elems.begin() + offset * pir_params_.ele_size, elems.begin() + (offset + 1) * pir_params_.ele_size);
- }
- Plaintext PIRClient::decode_reply(PirReply reply) {
- uint32_t exp_ratio = pir_params_.expansion_ratio;
- uint32_t recursion_level = pir_params_.d;
- vector<Ciphertext> temp = reply;
- uint64_t t = enc_params_.plain_modulus().value();
- for (uint32_t i = 0; i < recursion_level; i++) {
- cout << "Client: " << i + 1 << "/ " << recursion_level << "-th decryption layer started." << endl;
- vector<Ciphertext> newtemp;
- vector<Plaintext> tempplain;
- for (uint32_t j = 0; j < temp.size(); j++) {
- Plaintext ptxt;
- decryptor_->decrypt(temp[j], ptxt);
- #ifdef DEBUG
- cout << "Client: reply noise budget = " << decryptor_->invariant_noise_budget(temp[j]) << endl;
- #endif
-
- //cout << "decoded (and scaled) plaintext = " << ptxt.to_string() << endl;
- tempplain.push_back(ptxt);
- #ifdef DEBUG
- cout << "recursion level : " << i << " noise budget : ";
- cout << decryptor_->invariant_noise_budget(temp[j]) << endl;
- #endif
- if ((j + 1) % exp_ratio == 0 && j > 0) {
- // Combine into one ciphertext.
- Ciphertext combined = compose_to_ciphertext(tempplain);
- newtemp.push_back(combined);
- tempplain.clear();
- // cout << "Client: const term of ciphertext = " << combined[0] << endl;
- }
- }
- cout << "Client: done." << endl;
- cout << endl;
- if (i == recursion_level - 1) {
- assert(temp.size() == 1);
- return tempplain[0];
- } else {
- tempplain.clear();
- temp = newtemp;
- }
- }
- // This should never be called
- assert(0);
- Plaintext fail;
- return fail;
- }
- GaloisKeys PIRClient::generate_galois_keys() {
- // Generate the Galois keys needed for coeff_select.
- vector<uint32_t> galois_elts;
- int N = enc_params_.poly_modulus_degree();
- int logN = get_power_of_two(N);
- //cout << "printing galois elements...";
- for (int i = 0; i < logN; i++) {
- galois_elts.push_back((N + exponentiate_uint(2, i)) / exponentiate_uint(2, i));
- //#ifdef DEBUG
- // cout << galois_elts.back() << ", ";
- //#endif
- }
- GaloisKeys gal_keys;
- keygen_->create_galois_keys(galois_elts, gal_keys);
- return gal_keys;
- }
- Ciphertext PIRClient::compose_to_ciphertext(vector<Plaintext> plains) {
- size_t encrypted_count = 2;
- auto coeff_count = enc_params_.poly_modulus_degree();
- auto coeff_mod_count = enc_params_.coeff_modulus().size();
- uint64_t plainMod = enc_params_.plain_modulus().value();
- int logt = floor(log2(plainMod));
- Ciphertext result(*context_);
- result.resize(encrypted_count);
- // A triple for loop. Going over polys, moduli, and decomposed index.
- for (int i = 0; i < encrypted_count; i++) {
- uint64_t *encrypted_pointer = result.data(i);
- for (int j = 0; j < coeff_mod_count; j++) {
- // populate one poly at a time.
- // create a polynomial to store the current decomposition value
- // which will be copied into the array to populate it at the current
- // index.
- double logqj = log2(enc_params_.coeff_modulus()[j].value());
- int expansion_ratio = ceil(logqj / logt);
- uint64_t cur = 1;
- // cout << "Client: expansion_ratio = " << expansion_ratio << endl;
- for (int k = 0; k < expansion_ratio; k++) {
- // Compose here
- const uint64_t *plain_coeff =
- plains[k + j * (expansion_ratio) + i * (coeff_mod_count * expansion_ratio)]
- .data();
- for (int m = 0; m < coeff_count; m++) {
- if (k == 0) {
- *(encrypted_pointer + m + j * coeff_count) = *(plain_coeff + m) * cur;
- } else {
- *(encrypted_pointer + m + j * coeff_count) += *(plain_coeff + m) * cur;
- }
- }
- cur <<= logt;
- }
- }
- }
- return result;
- }
|