pir_server.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. #include "pir_server.hpp"
  2. #include "pir_client.hpp"
  3. using namespace std;
  4. using namespace seal;
  5. using namespace seal::util;
  6. PIRServer::PIRServer(const EncryptionParameters &enc_params, const PirParams &pir_params) :
  7. enc_params_(enc_params),
  8. pir_params_(pir_params),
  9. is_db_preprocessed_(false)
  10. {
  11. context_ = make_shared<SEALContext>(enc_params, true);
  12. evaluator_ = make_unique<Evaluator>(*context_);
  13. encoder_ = make_unique<BatchEncoder>(*context_);
  14. }
  15. void PIRServer::preprocess_database() {
  16. if (!is_db_preprocessed_) {
  17. for (uint32_t i = 0; i < db_->size(); i++) {
  18. evaluator_->transform_to_ntt_inplace(
  19. db_->operator[](i), context_->first_parms_id());
  20. }
  21. is_db_preprocessed_ = true;
  22. }
  23. }
  24. // Server takes over ownership of db and will free it when it exits
  25. void PIRServer::set_database(unique_ptr<vector<Plaintext>> &&db) {
  26. if (!db) {
  27. throw invalid_argument("db cannot be null");
  28. }
  29. db_ = move(db);
  30. is_db_preprocessed_ = false;
  31. }
  32. void PIRServer::set_database(const std::unique_ptr<const uint8_t[]> &bytes,
  33. uint64_t ele_num, uint64_t ele_size) {
  34. uint32_t logt = floor(log2(enc_params_.plain_modulus().value()));
  35. uint32_t N = enc_params_.poly_modulus_degree();
  36. // number of FV plaintexts needed to represent all elements
  37. uint64_t num_of_plaintexts = pir_params_.num_of_plaintexts;
  38. // number of FV plaintexts needed to create the d-dimensional matrix
  39. uint64_t prod = 1;
  40. for (uint32_t i = 0; i < pir_params_.nvec.size(); i++) {
  41. prod *= pir_params_.nvec[i];
  42. }
  43. uint64_t matrix_plaintexts = prod;
  44. assert(num_of_plaintexts <= matrix_plaintexts);
  45. auto result = make_unique<vector<Plaintext>>();
  46. result->reserve(matrix_plaintexts);
  47. uint64_t ele_per_ptxt = pir_params_.elements_per_plaintext;
  48. uint64_t bytes_per_ptxt = ele_per_ptxt * ele_size;
  49. uint64_t db_size = ele_num * ele_size;
  50. uint64_t coeff_per_ptxt = ele_per_ptxt * coefficients_per_element(logt, ele_size);
  51. assert(coeff_per_ptxt <= N);
  52. uint32_t offset = 0;
  53. for (uint64_t i = 0; i < num_of_plaintexts; i++) {
  54. uint64_t process_bytes = 0;
  55. if (db_size <= offset) {
  56. break;
  57. } else if (db_size < offset + bytes_per_ptxt) {
  58. process_bytes = db_size - offset;
  59. } else {
  60. process_bytes = bytes_per_ptxt;
  61. }
  62. // Get the coefficients of the elements that will be packed in plaintext i
  63. vector<uint64_t> coefficients = bytes_to_coeffs(logt, bytes.get() + offset, process_bytes);
  64. offset += process_bytes;
  65. uint64_t used = coefficients.size();
  66. assert(used <= coeff_per_ptxt);
  67. // Pad the rest with 1s
  68. for (uint64_t j = 0; j < (pir_params_.slot_count - used); j++) {
  69. coefficients.push_back(1);
  70. }
  71. Plaintext plain;
  72. encoder_->encode(coefficients, plain);
  73. // cout << i << "-th encoded plaintext = " << plain.to_string() << endl;
  74. result->push_back(move(plain));
  75. }
  76. // Add padding to make database a matrix
  77. uint64_t current_plaintexts = result->size();
  78. assert(current_plaintexts <= num_of_plaintexts);
  79. #ifdef DEBUG
  80. cout << "adding: " << matrix_plaintexts - current_plaintexts
  81. << " FV plaintexts of padding (equivalent to: "
  82. << (matrix_plaintexts - current_plaintexts) * elements_per_ptxt(logtp, N, ele_size)
  83. << " elements)" << endl;
  84. #endif
  85. vector<uint64_t> padding(N, 1);
  86. for (uint64_t i = 0; i < (matrix_plaintexts - current_plaintexts); i++) {
  87. Plaintext plain;
  88. vector_to_plaintext(padding, plain);
  89. result->push_back(plain);
  90. }
  91. set_database(move(result));
  92. }
  93. void PIRServer::set_galois_key(uint32_t client_id, seal::GaloisKeys galkey) {
  94. galoisKeys_[client_id] = galkey;
  95. }
  96. PirQuery PIRServer::deserialize_query(stringstream &stream) {
  97. PirQuery q;
  98. for (uint32_t i; i < pir_params_.d; i++) {
  99. // number of ciphertexts needed to encode the index for dimension i
  100. // keeping into account that each ciphertext can encode up to poly_modulus_degree indexes
  101. // In most cases this is usually 1.
  102. uint32_t ctx_per_dimension = ceil((pir_params_.nvec[i] + 0.0) / enc_params_.poly_modulus_degree());
  103. vector<Ciphertext> cs;
  104. for (uint32_t j = 0; j < ctx_per_dimension; j++) {
  105. Ciphertext c;
  106. c.load(*context_, stream);
  107. cs.push_back(c);
  108. }
  109. q.push_back(cs);
  110. }
  111. return q;
  112. }
  113. PirReply PIRServer::generate_reply(PirQuery query, uint32_t client_id) {
  114. vector<uint64_t> nvec = pir_params_.nvec;
  115. uint64_t product = 1;
  116. for (uint32_t i = 0; i < nvec.size(); i++) {
  117. product *= nvec[i];
  118. }
  119. auto coeff_count = enc_params_.poly_modulus_degree();
  120. vector<Plaintext> *cur = db_.get();
  121. vector<Plaintext> intermediate_plain; // decompose....
  122. auto pool = MemoryManager::GetPool();
  123. int N = enc_params_.poly_modulus_degree();
  124. int logt = floor(log2(enc_params_.plain_modulus().value()));
  125. for (uint32_t i = 0; i < nvec.size(); i++) {
  126. cout << "Server: " << i + 1 << "-th recursion level started " << endl;
  127. vector<Ciphertext> expanded_query;
  128. uint64_t n_i = nvec[i];
  129. cout << "Server: n_i = " << n_i << endl;
  130. cout << "Server: expanding " << query[i].size() << " query ctxts" << endl;
  131. for (uint32_t j = 0; j < query[i].size(); j++){
  132. uint64_t total = N;
  133. if (j == query[i].size() - 1){
  134. total = n_i % N;
  135. }
  136. cout << "-- expanding one query ctxt into " << total << " ctxts "<< endl;
  137. vector<Ciphertext> expanded_query_part = expand_query(query[i][j], total, client_id);
  138. expanded_query.insert(expanded_query.end(), std::make_move_iterator(expanded_query_part.begin()),
  139. std::make_move_iterator(expanded_query_part.end()));
  140. expanded_query_part.clear();
  141. }
  142. cout << "Server: expansion done " << endl;
  143. if (expanded_query.size() != n_i) {
  144. cout << " size mismatch!!! " << expanded_query.size() << ", " << n_i << endl;
  145. }
  146. // Transform expanded query to NTT, and ...
  147. for (uint32_t jj = 0; jj < expanded_query.size(); jj++) {
  148. evaluator_->transform_to_ntt_inplace(expanded_query[jj]);
  149. }
  150. // Transform plaintext to NTT. If database is pre-processed, can skip
  151. if ((!is_db_preprocessed_) || i > 0) {
  152. for (uint32_t jj = 0; jj < cur->size(); jj++) {
  153. evaluator_->transform_to_ntt_inplace((*cur)[jj], context_->first_parms_id());
  154. }
  155. }
  156. for (uint64_t k = 0; k < product; k++) {
  157. if ((*cur)[k].is_zero()){
  158. cout << k + 1 << "/ " << product << "-th ptxt = 0 " << endl;
  159. }
  160. }
  161. product /= n_i;
  162. vector<Ciphertext> intermediateCtxts(product);
  163. Ciphertext temp;
  164. for (uint64_t k = 0; k < product; k++) {
  165. evaluator_->multiply_plain(expanded_query[0], (*cur)[k], intermediateCtxts[k]);
  166. for (uint64_t j = 1; j < n_i; j++) {
  167. evaluator_->multiply_plain(expanded_query[j], (*cur)[k + j * product], temp);
  168. evaluator_->add_inplace(intermediateCtxts[k], temp); // Adds to first component.
  169. }
  170. }
  171. for (uint32_t jj = 0; jj < intermediateCtxts.size(); jj++) {
  172. evaluator_->transform_from_ntt_inplace(intermediateCtxts[jj]);
  173. // print intermediate ctxts?
  174. //cout << "const term of ctxt " << jj << " = " << intermediateCtxts[jj][0] << endl;
  175. }
  176. if (i == nvec.size() - 1) {
  177. return intermediateCtxts;
  178. } else {
  179. intermediate_plain.clear();
  180. intermediate_plain.reserve(pir_params_.expansion_ratio * product);
  181. cur = &intermediate_plain;
  182. auto tempplain = util::allocate<Plaintext>(
  183. pir_params_.expansion_ratio * product,
  184. pool, coeff_count);
  185. for (uint64_t rr = 0; rr < product; rr++) {
  186. decompose_to_plaintexts_ptr(intermediateCtxts[rr],
  187. tempplain.get() + rr * pir_params_.expansion_ratio, logt);
  188. for (uint32_t jj = 0; jj < pir_params_.expansion_ratio; jj++) {
  189. auto offset = rr * pir_params_.expansion_ratio + jj;
  190. intermediate_plain.emplace_back(tempplain[offset]);
  191. }
  192. }
  193. product *= pir_params_.expansion_ratio; // multiply by expansion rate.
  194. }
  195. cout << "Server: " << i + 1 << "-th recursion level finished " << endl;
  196. cout << endl;
  197. }
  198. cout << "reply generated! " << endl;
  199. // This should never get here
  200. assert(0);
  201. vector<Ciphertext> fail(1);
  202. return fail;
  203. }
  204. inline vector<Ciphertext> PIRServer::expand_query(const Ciphertext &encrypted, uint32_t m,
  205. uint32_t client_id) {
  206. GaloisKeys &galkey = galoisKeys_[client_id];
  207. // Assume that m is a power of 2. If not, round it to the next power of 2.
  208. uint32_t logm = ceil(log2(m));
  209. Plaintext two("2");
  210. vector<int> galois_elts;
  211. auto n = enc_params_.poly_modulus_degree();
  212. if (logm > ceil(log2(n))){
  213. throw logic_error("m > n is not allowed.");
  214. }
  215. for (int i = 0; i < ceil(log2(n)); i++) {
  216. galois_elts.push_back((n + exponentiate_uint(2, i)) / exponentiate_uint(2, i));
  217. }
  218. vector<Ciphertext> temp;
  219. temp.push_back(encrypted);
  220. Ciphertext tempctxt;
  221. Ciphertext tempctxt_rotated;
  222. Ciphertext tempctxt_shifted;
  223. Ciphertext tempctxt_rotatedshifted;
  224. for (uint32_t i = 0; i < logm - 1; i++) {
  225. vector<Ciphertext> newtemp(temp.size() << 1);
  226. // temp[a] = (j0 = a (mod 2**i) ? ) : Enc(x^{j0 - a}) else Enc(0). With
  227. // some scaling....
  228. int index_raw = (n << 1) - (1 << i);
  229. int index = (index_raw * galois_elts[i]) % (n << 1);
  230. for (uint32_t a = 0; a < temp.size(); a++) {
  231. evaluator_->apply_galois(temp[a], galois_elts[i], galkey, tempctxt_rotated);
  232. //cout << "rotate " << client.decryptor_->invariant_noise_budget(tempctxt_rotated) << ", ";
  233. evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
  234. multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
  235. //cout << "mul by x^pow: " << client.decryptor_->invariant_noise_budget(tempctxt_shifted) << ", ";
  236. multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
  237. // cout << "mul by x^pow: " << client.decryptor_->invariant_noise_budget(tempctxt_rotatedshifted) << ", ";
  238. // Enc(2^i x^j) if j = 0 (mod 2**i).
  239. evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted, newtemp[a + temp.size()]);
  240. }
  241. temp = newtemp;
  242. /*
  243. cout << "end: ";
  244. for (int h = 0; h < temp.size();h++){
  245. cout << client.decryptor_->invariant_noise_budget(temp[h]) << ", ";
  246. }
  247. cout << endl;
  248. */
  249. }
  250. // Last step of the loop
  251. vector<Ciphertext> newtemp(temp.size() << 1);
  252. int index_raw = (n << 1) - (1 << (logm - 1));
  253. int index = (index_raw * galois_elts[logm - 1]) % (n << 1);
  254. for (uint32_t a = 0; a < temp.size(); a++) {
  255. if (a >= (m - (1 << (logm - 1)))) { // corner case.
  256. evaluator_->multiply_plain(temp[a], two, newtemp[a]); // plain multiplication by 2.
  257. // cout << client.decryptor_->invariant_noise_budget(newtemp[a]) << ", ";
  258. } else {
  259. evaluator_->apply_galois(temp[a], galois_elts[logm - 1], galkey, tempctxt_rotated);
  260. evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
  261. multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
  262. multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
  263. evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted, newtemp[a + temp.size()]);
  264. }
  265. }
  266. vector<Ciphertext>::const_iterator first = newtemp.begin();
  267. vector<Ciphertext>::const_iterator last = newtemp.begin() + m;
  268. vector<Ciphertext> newVec(first, last);
  269. return newVec;
  270. }
  271. inline void PIRServer::multiply_power_of_X(const Ciphertext &encrypted, Ciphertext &destination,
  272. uint32_t index) {
  273. auto coeff_mod_count = enc_params_.coeff_modulus().size() - 1;
  274. auto coeff_count = enc_params_.poly_modulus_degree();
  275. auto encrypted_count = encrypted.size();
  276. //cout << "coeff mod count for power of X = " << coeff_mod_count << endl;
  277. //cout << "coeff count for power of X = " << coeff_count << endl;
  278. // First copy over.
  279. destination = encrypted;
  280. // Prepare for destination
  281. // Multiply X^index for each ciphertext polynomial
  282. for (int i = 0; i < encrypted_count; i++) {
  283. for (int j = 0; j < coeff_mod_count; j++) {
  284. negacyclic_shift_poly_coeffmod(encrypted.data(i) + (j * coeff_count),
  285. coeff_count, index,
  286. enc_params_.coeff_modulus()[j],
  287. destination.data(i) + (j * coeff_count));
  288. }
  289. }
  290. }
  291. inline void PIRServer::decompose_to_plaintexts_ptr(const Ciphertext &encrypted, Plaintext *plain_ptr, int logt) {
  292. vector<Plaintext> result;
  293. auto coeff_count = enc_params_.poly_modulus_degree();
  294. auto coeff_mod_count = enc_params_.coeff_modulus().size();
  295. auto encrypted_count = encrypted.size();
  296. uint64_t t1 = 1 << logt; // t1 <= t.
  297. uint64_t t1minusone = t1 -1;
  298. // A triple for loop. Going over polys, moduli, and decomposed index.
  299. for (int i = 0; i < encrypted_count; i++) {
  300. const uint64_t *encrypted_pointer = encrypted.data(i);
  301. for (int j = 0; j < coeff_mod_count; j++) {
  302. // populate one poly at a time.
  303. // create a polynomial to store the current decomposition value
  304. // which will be copied into the array to populate it at the current
  305. // index.
  306. double logqj = log2(enc_params_.coeff_modulus()[j].value());
  307. //int expansion_ratio = ceil(logqj + exponent - 1) / exponent;
  308. int expansion_ratio = ceil(logqj / logt);
  309. // cout << "local expansion ratio = " << expansion_ratio << endl;
  310. uint64_t curexp = 0;
  311. for (int k = 0; k < expansion_ratio; k++) {
  312. // Decompose here
  313. for (int m = 0; m < coeff_count; m++) {
  314. plain_ptr[i * coeff_mod_count * expansion_ratio
  315. + j * expansion_ratio + k][m] =
  316. (*(encrypted_pointer + m + (j * coeff_count)) >> curexp) & t1minusone;
  317. }
  318. curexp += logt;
  319. }
  320. }
  321. }
  322. }
  323. vector<Plaintext> PIRServer::decompose_to_plaintexts(const Ciphertext &encrypted) {
  324. vector<Plaintext> result;
  325. auto coeff_count = enc_params_.poly_modulus_degree();
  326. auto coeff_mod_count = enc_params_.coeff_modulus().size();
  327. auto plain_bit_count = enc_params_.plain_modulus().bit_count();
  328. auto encrypted_count = encrypted.size();
  329. // Generate powers of t.
  330. uint64_t plainMod = enc_params_.plain_modulus().value();
  331. // A triple for loop. Going over polys, moduli, and decomposed index.
  332. for (int i = 0; i < encrypted_count; i++) {
  333. const uint64_t *encrypted_pointer = encrypted.data(i);
  334. for (int j = 0; j < coeff_mod_count; j++) {
  335. // populate one poly at a time.
  336. // create a polynomial to store the current decomposition value
  337. // which will be copied into the array to populate it at the current
  338. // index.
  339. int logqj = log2(enc_params_.coeff_modulus()[j].value());
  340. int expansion_ratio = ceil(logqj / log2(plainMod));
  341. // cout << "expansion ratio = " << expansion_ratio << endl;
  342. uint64_t cur = 1;
  343. for (int k = 0; k < expansion_ratio; k++) {
  344. // Decompose here
  345. Plaintext temp(coeff_count);
  346. transform(encrypted_pointer + (j * coeff_count),
  347. encrypted_pointer + ((j + 1) * coeff_count),
  348. temp.data(),
  349. [cur, &plainMod](auto &in) { return (in / cur) % plainMod; }
  350. );
  351. result.emplace_back(move(temp));
  352. cur *= plainMod;
  353. }
  354. }
  355. }
  356. return result;
  357. }