123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 |
- #include "pir_server.hpp"
- #include "pir_client.hpp"
- using namespace std;
- using namespace seal;
- using namespace seal::util;
- PIRServer::PIRServer(const EncryptionParameters &enc_params, const PirParams &pir_params) :
- enc_params_(enc_params),
- pir_params_(pir_params),
- is_db_preprocessed_(false)
- {
- context_ = make_shared<SEALContext>(enc_params, true);
- evaluator_ = make_unique<Evaluator>(*context_);
- encoder_ = make_unique<BatchEncoder>(*context_);
- }
- void PIRServer::preprocess_database() {
- if (!is_db_preprocessed_) {
- for (uint32_t i = 0; i < db_->size(); i++) {
- evaluator_->transform_to_ntt_inplace(
- db_->operator[](i), context_->first_parms_id());
- }
- is_db_preprocessed_ = true;
- }
- }
- // Server takes over ownership of db and will free it when it exits
- void PIRServer::set_database(unique_ptr<vector<Plaintext>> &&db) {
- if (!db) {
- throw invalid_argument("db cannot be null");
- }
- db_ = move(db);
- is_db_preprocessed_ = false;
- }
- void PIRServer::set_database(const std::unique_ptr<const std::uint8_t[]> &bytes,
- uint64_t ele_num, uint64_t ele_size) {
- uint32_t logt = floor(log2(enc_params_.plain_modulus().value()));
- uint32_t N = enc_params_.poly_modulus_degree();
- // number of FV plaintexts needed to represent all elements
- uint64_t num_of_plaintexts = pir_params_.num_of_plaintexts;
- // number of FV plaintexts needed to create the d-dimensional matrix
- uint64_t prod = 1;
- for (uint32_t i = 0; i < pir_params_.nvec.size(); i++) {
- prod *= pir_params_.nvec[i];
- }
- uint64_t matrix_plaintexts = prod;
- assert(num_of_plaintexts <= matrix_plaintexts);
- auto result = make_unique<vector<Plaintext>>();
- result->reserve(matrix_plaintexts);
- uint64_t ele_per_ptxt = pir_params_.elements_per_plaintext;
- uint64_t bytes_per_ptxt = ele_per_ptxt * ele_size;
- uint64_t db_size = ele_num * ele_size;
- uint64_t coeff_per_ptxt = ele_per_ptxt * coefficients_per_element(logt, ele_size);
- assert(coeff_per_ptxt <= N);
- uint32_t offset = 0;
- for (uint64_t i = 0; i < num_of_plaintexts; i++) {
- uint64_t process_bytes = 0;
- if (db_size <= offset) {
- break;
- } else if (db_size < offset + bytes_per_ptxt) {
- process_bytes = db_size - offset;
- } else {
- process_bytes = bytes_per_ptxt;
- }
- // Get the coefficients of the elements that will be packed in plaintext i
- vector<uint64_t> coefficients = bytes_to_coeffs(logt, bytes.get() + offset, process_bytes);
- offset += process_bytes;
- uint64_t used = coefficients.size();
- assert(used <= coeff_per_ptxt);
- // Pad the rest with 1s
- for (uint64_t j = 0; j < (pir_params_.slot_count - used); j++) {
- coefficients.push_back(1);
- }
- Plaintext plain;
- encoder_->encode(coefficients, plain);
- // cout << i << "-th encoded plaintext = " << plain.to_string() << endl;
- result->push_back(move(plain));
- }
- // Add padding to make database a matrix
- uint64_t current_plaintexts = result->size();
- assert(current_plaintexts <= num_of_plaintexts);
- #ifdef DEBUG
- cout << "adding: " << matrix_plaintexts - current_plaintexts
- << " FV plaintexts of padding (equivalent to: "
- << (matrix_plaintexts - current_plaintexts) * elements_per_ptxt(logtp, N, ele_size)
- << " elements)" << endl;
- #endif
- vector<uint64_t> padding(N, 1);
- for (uint64_t i = 0; i < (matrix_plaintexts - current_plaintexts); i++) {
- Plaintext plain;
- vector_to_plaintext(padding, plain);
- result->push_back(plain);
- }
- set_database(move(result));
- }
- void PIRServer::set_galois_key(std::uint32_t client_id, seal::GaloisKeys galkey) {
- galoisKeys_[client_id] = galkey;
- }
- PirReply PIRServer::generate_reply(PirQuery query, uint32_t client_id) {
- vector<uint64_t> nvec = pir_params_.nvec;
- uint64_t product = 1;
- for (uint32_t i = 0; i < nvec.size(); i++) {
- product *= nvec[i];
- }
- auto coeff_count = enc_params_.poly_modulus_degree();
- vector<Plaintext> *cur = db_.get();
- vector<Plaintext> intermediate_plain; // decompose....
- auto pool = MemoryManager::GetPool();
- int N = enc_params_.poly_modulus_degree();
- int logt = floor(log2(enc_params_.plain_modulus().value()));
- for (uint32_t i = 0; i < nvec.size(); i++) {
- cout << "Server: " << i + 1 << "-th recursion level started " << endl;
- vector<Ciphertext> expanded_query;
- uint64_t n_i = nvec[i];
- cout << "Server: n_i = " << n_i << endl;
- cout << "Server: expanding " << query[i].size() << " query ctxts" << endl;
- for (uint32_t j = 0; j < query[i].size(); j++){
- uint64_t total = N;
- if (j == query[i].size() - 1){
- total = n_i % N;
- }
- cout << "-- expanding one query ctxt into " << total << " ctxts "<< endl;
- vector<Ciphertext> expanded_query_part = expand_query(query[i][j], total, client_id);
- expanded_query.insert(expanded_query.end(), std::make_move_iterator(expanded_query_part.begin()),
- std::make_move_iterator(expanded_query_part.end()));
- expanded_query_part.clear();
- }
- cout << "Server: expansion done " << endl;
- if (expanded_query.size() != n_i) {
- cout << " size mismatch!!! " << expanded_query.size() << ", " << n_i << endl;
- }
- // Transform expanded query to NTT, and ...
- for (uint32_t jj = 0; jj < expanded_query.size(); jj++) {
- evaluator_->transform_to_ntt_inplace(expanded_query[jj]);
- }
- // Transform plaintext to NTT. If database is pre-processed, can skip
- if ((!is_db_preprocessed_) || i > 0) {
- for (uint32_t jj = 0; jj < cur->size(); jj++) {
- evaluator_->transform_to_ntt_inplace((*cur)[jj], context_->first_parms_id());
- }
- }
- for (uint64_t k = 0; k < product; k++) {
- if ((*cur)[k].is_zero()){
- cout << k + 1 << "/ " << product << "-th ptxt = 0 " << endl;
- }
- }
- product /= n_i;
- vector<Ciphertext> intermediateCtxts(product);
- Ciphertext temp;
- for (uint64_t k = 0; k < product; k++) {
- evaluator_->multiply_plain(expanded_query[0], (*cur)[k], intermediateCtxts[k]);
- for (uint64_t j = 1; j < n_i; j++) {
- evaluator_->multiply_plain(expanded_query[j], (*cur)[k + j * product], temp);
- evaluator_->add_inplace(intermediateCtxts[k], temp); // Adds to first component.
- }
- }
- for (uint32_t jj = 0; jj < intermediateCtxts.size(); jj++) {
- evaluator_->transform_from_ntt_inplace(intermediateCtxts[jj]);
- // print intermediate ctxts?
- //cout << "const term of ctxt " << jj << " = " << intermediateCtxts[jj][0] << endl;
- }
- if (i == nvec.size() - 1) {
- return intermediateCtxts;
- } else {
- intermediate_plain.clear();
- intermediate_plain.reserve(pir_params_.expansion_ratio * product);
- cur = &intermediate_plain;
- auto tempplain = util::allocate<Plaintext>(
- pir_params_.expansion_ratio * product,
- pool, coeff_count);
- for (uint64_t rr = 0; rr < product; rr++) {
- decompose_to_plaintexts_ptr(intermediateCtxts[rr],
- tempplain.get() + rr * pir_params_.expansion_ratio, logt);
- for (uint32_t jj = 0; jj < pir_params_.expansion_ratio; jj++) {
- auto offset = rr * pir_params_.expansion_ratio + jj;
- intermediate_plain.emplace_back(tempplain[offset]);
- }
- }
- product *= pir_params_.expansion_ratio; // multiply by expansion rate.
- }
- cout << "Server: " << i + 1 << "-th recursion level finished " << endl;
- cout << endl;
- }
- cout << "reply generated! " << endl;
- // This should never get here
- assert(0);
- vector<Ciphertext> fail(1);
- return fail;
- }
- inline vector<Ciphertext> PIRServer::expand_query(const Ciphertext &encrypted, uint32_t m,
- uint32_t client_id) {
- GaloisKeys &galkey = galoisKeys_[client_id];
- // Assume that m is a power of 2. If not, round it to the next power of 2.
- uint32_t logm = ceil(log2(m));
- Plaintext two("2");
- vector<int> galois_elts;
- auto n = enc_params_.poly_modulus_degree();
- if (logm > ceil(log2(n))){
- throw logic_error("m > n is not allowed.");
- }
- for (int i = 0; i < ceil(log2(n)); i++) {
- galois_elts.push_back((n + exponentiate_uint(2, i)) / exponentiate_uint(2, i));
- }
- vector<Ciphertext> temp;
- temp.push_back(encrypted);
- Ciphertext tempctxt;
- Ciphertext tempctxt_rotated;
- Ciphertext tempctxt_shifted;
- Ciphertext tempctxt_rotatedshifted;
- for (uint32_t i = 0; i < logm - 1; i++) {
- vector<Ciphertext> newtemp(temp.size() << 1);
- // temp[a] = (j0 = a (mod 2**i) ? ) : Enc(x^{j0 - a}) else Enc(0). With
- // some scaling....
- int index_raw = (n << 1) - (1 << i);
- int index = (index_raw * galois_elts[i]) % (n << 1);
- for (uint32_t a = 0; a < temp.size(); a++) {
- evaluator_->apply_galois(temp[a], galois_elts[i], galkey, tempctxt_rotated);
- //cout << "rotate " << client.decryptor_->invariant_noise_budget(tempctxt_rotated) << ", ";
- evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
- multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
- //cout << "mul by x^pow: " << client.decryptor_->invariant_noise_budget(tempctxt_shifted) << ", ";
- multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
- // cout << "mul by x^pow: " << client.decryptor_->invariant_noise_budget(tempctxt_rotatedshifted) << ", ";
- // Enc(2^i x^j) if j = 0 (mod 2**i).
- evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted, newtemp[a + temp.size()]);
- }
- temp = newtemp;
- /*
- cout << "end: ";
- for (int h = 0; h < temp.size();h++){
- cout << client.decryptor_->invariant_noise_budget(temp[h]) << ", ";
- }
- cout << endl;
- */
- }
- // Last step of the loop
- vector<Ciphertext> newtemp(temp.size() << 1);
- int index_raw = (n << 1) - (1 << (logm - 1));
- int index = (index_raw * galois_elts[logm - 1]) % (n << 1);
- for (uint32_t a = 0; a < temp.size(); a++) {
- if (a >= (m - (1 << (logm - 1)))) { // corner case.
- evaluator_->multiply_plain(temp[a], two, newtemp[a]); // plain multiplication by 2.
- // cout << client.decryptor_->invariant_noise_budget(newtemp[a]) << ", ";
- } else {
- evaluator_->apply_galois(temp[a], galois_elts[logm - 1], galkey, tempctxt_rotated);
- evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
- multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
- multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
- evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted, newtemp[a + temp.size()]);
- }
- }
- vector<Ciphertext>::const_iterator first = newtemp.begin();
- vector<Ciphertext>::const_iterator last = newtemp.begin() + m;
- vector<Ciphertext> newVec(first, last);
- return newVec;
- }
- inline void PIRServer::multiply_power_of_X(const Ciphertext &encrypted, Ciphertext &destination,
- uint32_t index) {
- auto coeff_mod_count = enc_params_.coeff_modulus().size() - 1;
- auto coeff_count = enc_params_.poly_modulus_degree();
- auto encrypted_count = encrypted.size();
- //cout << "coeff mod count for power of X = " << coeff_mod_count << endl;
- //cout << "coeff count for power of X = " << coeff_count << endl;
- // First copy over.
- destination = encrypted;
- // Prepare for destination
- // Multiply X^index for each ciphertext polynomial
- for (int i = 0; i < encrypted_count; i++) {
- for (int j = 0; j < coeff_mod_count; j++) {
- negacyclic_shift_poly_coeffmod(encrypted.data(i) + (j * coeff_count),
- coeff_count, index,
- enc_params_.coeff_modulus()[j],
- destination.data(i) + (j * coeff_count));
- }
- }
- }
- inline void PIRServer::decompose_to_plaintexts_ptr(const Ciphertext &encrypted, Plaintext *plain_ptr, int logt) {
- vector<Plaintext> result;
- auto coeff_count = enc_params_.poly_modulus_degree();
- auto coeff_mod_count = enc_params_.coeff_modulus().size();
- auto encrypted_count = encrypted.size();
- uint64_t t1 = 1 << logt; // t1 <= t.
- uint64_t t1minusone = t1 -1;
- // A triple for loop. Going over polys, moduli, and decomposed index.
- for (int i = 0; i < encrypted_count; i++) {
- const uint64_t *encrypted_pointer = encrypted.data(i);
- for (int j = 0; j < coeff_mod_count; j++) {
- // populate one poly at a time.
- // create a polynomial to store the current decomposition value
- // which will be copied into the array to populate it at the current
- // index.
- double logqj = log2(enc_params_.coeff_modulus()[j].value());
- //int expansion_ratio = ceil(logqj + exponent - 1) / exponent;
- int expansion_ratio = ceil(logqj / logt);
- // cout << "local expansion ratio = " << expansion_ratio << endl;
- uint64_t curexp = 0;
- for (int k = 0; k < expansion_ratio; k++) {
- // Decompose here
- for (int m = 0; m < coeff_count; m++) {
- plain_ptr[i * coeff_mod_count * expansion_ratio
- + j * expansion_ratio + k][m] =
- (*(encrypted_pointer + m + (j * coeff_count)) >> curexp) & t1minusone;
- }
- curexp += logt;
- }
- }
- }
- }
- vector<Plaintext> PIRServer::decompose_to_plaintexts(const Ciphertext &encrypted) {
- vector<Plaintext> result;
- auto coeff_count = enc_params_.poly_modulus_degree();
- auto coeff_mod_count = enc_params_.coeff_modulus().size();
- auto plain_bit_count = enc_params_.plain_modulus().bit_count();
- auto encrypted_count = encrypted.size();
- // Generate powers of t.
- uint64_t plainMod = enc_params_.plain_modulus().value();
- // A triple for loop. Going over polys, moduli, and decomposed index.
- for (int i = 0; i < encrypted_count; i++) {
- const uint64_t *encrypted_pointer = encrypted.data(i);
- for (int j = 0; j < coeff_mod_count; j++) {
- // populate one poly at a time.
- // create a polynomial to store the current decomposition value
- // which will be copied into the array to populate it at the current
- // index.
- int logqj = log2(enc_params_.coeff_modulus()[j].value());
- int expansion_ratio = ceil(logqj / log2(plainMod));
- // cout << "expansion ratio = " << expansion_ratio << endl;
- uint64_t cur = 1;
- for (int k = 0; k < expansion_ratio; k++) {
- // Decompose here
- Plaintext temp(coeff_count);
- transform(encrypted_pointer + (j * coeff_count),
- encrypted_pointer + ((j + 1) * coeff_count),
- temp.data(),
- [cur, &plainMod](auto &in) { return (in / cur) % plainMod; }
- );
- result.emplace_back(move(temp));
- cur *= plainMod;
- }
- }
- }
- return result;
- }
|