pir_client.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. #include "pir_client.hpp"
  2. using namespace std;
  3. using namespace seal;
  4. using namespace seal::util;
  5. PIRClient::PIRClient(const EncryptionParameters &enc_params,
  6. const PirParams &pir_params) :
  7. enc_params_(enc_params),
  8. pir_params_(pir_params){
  9. context_ = make_shared<SEALContext>(enc_params, true);
  10. keygen_ = make_unique<KeyGenerator>(*context_);
  11. PublicKey public_key;
  12. keygen_->create_public_key(public_key);
  13. SecretKey secret_key = keygen_->secret_key();
  14. if(pir_params_.enable_symmetric){
  15. encryptor_ = make_unique<Encryptor>(*context_, secret_key);
  16. }
  17. else{
  18. encryptor_ = make_unique<Encryptor>(*context_, public_key);
  19. }
  20. decryptor_ = make_unique<Decryptor>(*context_, secret_key);
  21. evaluator_ = make_unique<Evaluator>(*context_);
  22. encoder_ = make_unique<BatchEncoder>(*context_);
  23. }
  24. int PIRClient::generate_serialized_query(uint64_t desiredIndex, std::stringstream &stream) {
  25. int N = enc_params_.poly_modulus_degree();
  26. int output_size = 0;
  27. indices_ = compute_indices(desiredIndex, pir_params_.nvec);
  28. Plaintext pt(enc_params_.poly_modulus_degree());
  29. for (uint32_t i = 0; i < indices_.size(); i++) {
  30. uint32_t num_ptxts = ceil( (pir_params_.nvec[i] + 0.0) / N);
  31. // initialize result.
  32. cout << "Client: index " << i + 1 << "/ " << indices_.size() << " = " << indices_[i] << endl;
  33. cout << "Client: number of ctxts needed for query = " << num_ptxts << endl;
  34. for (uint32_t j =0; j < num_ptxts; j++){
  35. pt.set_zero();
  36. if (indices_[i] >= N*j && indices_[i] <= N*(j+1)){
  37. uint64_t real_index = indices_[i] - N*j;
  38. uint64_t n_i = pir_params_.nvec[i];
  39. uint64_t total = N;
  40. if (j == num_ptxts - 1){
  41. total = n_i % N;
  42. }
  43. uint64_t log_total = ceil(log2(total));
  44. cout << "Client: Inverting " << pow(2, log_total) << endl;
  45. pt[real_index] = invert_mod(pow(2, log_total), enc_params_.plain_modulus());
  46. }
  47. if(pir_params_.enable_symmetric){
  48. output_size += encryptor_->encrypt_symmetric(pt).save(stream);
  49. }
  50. else{
  51. output_size += encryptor_->encrypt(pt).save(stream);
  52. }
  53. }
  54. }
  55. return output_size;
  56. }
  57. PirQuery PIRClient::generate_query(uint64_t desiredIndex) {
  58. indices_ = compute_indices(desiredIndex, pir_params_.nvec);
  59. PirQuery result(pir_params_.d);
  60. int N = enc_params_.poly_modulus_degree();
  61. Plaintext pt(enc_params_.poly_modulus_degree());
  62. for (uint32_t i = 0; i < indices_.size(); i++) {
  63. uint32_t num_ptxts = ceil( (pir_params_.nvec[i] + 0.0) / N);
  64. // initialize result.
  65. cout << "Client: index " << i + 1 << "/ " << indices_.size() << " = " << indices_[i] << endl;
  66. cout << "Client: number of ctxts needed for query = " << num_ptxts << endl;
  67. for (uint32_t j =0; j < num_ptxts; j++){
  68. pt.set_zero();
  69. if (indices_[i] >= N*j && indices_[i] <= N*(j+1)){
  70. uint64_t real_index = indices_[i] - N*j;
  71. uint64_t n_i = pir_params_.nvec[i];
  72. uint64_t total = N;
  73. if (j == num_ptxts - 1){
  74. total = n_i % N;
  75. }
  76. uint64_t log_total = ceil(log2(total));
  77. cout << "Client: Inverting " << pow(2, log_total) << endl;
  78. pt[real_index] = invert_mod(pow(2, log_total), enc_params_.plain_modulus());
  79. }
  80. Ciphertext dest;
  81. if(pir_params_.enable_symmetric){
  82. encryptor_->encrypt_symmetric(pt, dest);
  83. }
  84. else{
  85. encryptor_->encrypt(pt, dest);
  86. }
  87. result[i].push_back(dest);
  88. }
  89. }
  90. return result;
  91. }
  92. uint64_t PIRClient::get_fv_index(uint64_t element_index) {
  93. return static_cast<uint64_t>(element_index / pir_params_.elements_per_plaintext);
  94. }
  95. uint64_t PIRClient::get_fv_offset(uint64_t element_index) {
  96. return element_index % pir_params_.elements_per_plaintext;
  97. }
  98. Plaintext PIRClient::decrypt(Ciphertext ct){
  99. Plaintext pt;
  100. decryptor_->decrypt(ct, pt);
  101. return pt;
  102. }
  103. vector<uint8_t> PIRClient::decode_reply(PirReply &reply, uint64_t offset){
  104. Plaintext result = decode_reply(reply);
  105. return extract_bytes(result, offset);
  106. }
  107. vector<uint64_t> PIRClient::extract_coeffs(Plaintext pt){
  108. vector<uint64_t> coeffs;
  109. encoder_->decode(pt, coeffs);
  110. return coeffs;
  111. }
  112. std::vector<uint64_t> PIRClient::extract_coeffs(seal::Plaintext pt, uint64_t offset){
  113. vector<uint64_t> coeffs;
  114. encoder_->decode(pt, coeffs);
  115. uint32_t logt = floor(log2(enc_params_.plain_modulus().value()));
  116. uint64_t coeffs_per_element = coefficients_per_element(logt, pir_params_.ele_size);
  117. return std::vector<uint64_t>(coeffs.begin() + offset * coeffs_per_element, coeffs.begin() + (offset + 1) * coeffs_per_element);
  118. }
  119. std::vector<uint8_t> PIRClient::extract_bytes(seal::Plaintext pt, uint64_t offset){
  120. uint32_t N = enc_params_.poly_modulus_degree();
  121. uint32_t logt = floor(log2(enc_params_.plain_modulus().value()));
  122. // Convert from FV plaintext (polynomial) to database element at the client
  123. vector<uint8_t> elems(N * logt / 8);
  124. vector<uint64_t> coeffs;
  125. encoder_->decode(pt, coeffs);
  126. coeffs_to_bytes(logt, coeffs, elems.data(), (N * logt) / 8);
  127. return std::vector<uint8_t>(elems.begin() + offset * pir_params_.ele_size, elems.begin() + (offset + 1) * pir_params_.ele_size);
  128. }
  129. Plaintext PIRClient::decode_reply(PirReply &reply) {
  130. uint32_t exp_ratio = pir_params_.expansion_ratio;
  131. uint32_t recursion_level = pir_params_.d;
  132. vector<Ciphertext> temp = reply;
  133. uint64_t t = enc_params_.plain_modulus().value();
  134. for (uint32_t i = 0; i < recursion_level; i++) {
  135. cout << "Client: " << i + 1 << "/ " << recursion_level << "-th decryption layer started." << endl;
  136. vector<Ciphertext> newtemp;
  137. vector<Plaintext> tempplain;
  138. for (uint32_t j = 0; j < temp.size(); j++) {
  139. Plaintext ptxt;
  140. decryptor_->decrypt(temp[j], ptxt);
  141. #ifdef DEBUG
  142. cout << "Client: reply noise budget = " << decryptor_->invariant_noise_budget(temp[j]) << endl;
  143. #endif
  144. //cout << "decoded (and scaled) plaintext = " << ptxt.to_string() << endl;
  145. tempplain.push_back(ptxt);
  146. #ifdef DEBUG
  147. cout << "recursion level : " << i << " noise budget : ";
  148. cout << decryptor_->invariant_noise_budget(temp[j]) << endl;
  149. #endif
  150. if ((j + 1) % exp_ratio == 0 && j > 0) {
  151. // Combine into one ciphertext.
  152. Ciphertext combined = compose_to_ciphertext(tempplain);
  153. newtemp.push_back(combined);
  154. tempplain.clear();
  155. // cout << "Client: const term of ciphertext = " << combined[0] << endl;
  156. }
  157. }
  158. cout << "Client: done." << endl;
  159. cout << endl;
  160. if (i == recursion_level - 1) {
  161. assert(temp.size() == 1);
  162. return tempplain[0];
  163. } else {
  164. tempplain.clear();
  165. temp = newtemp;
  166. }
  167. }
  168. // This should never be called
  169. assert(0);
  170. Plaintext fail;
  171. return fail;
  172. }
  173. GaloisKeys PIRClient::generate_galois_keys() {
  174. // Generate the Galois keys needed for coeff_select.
  175. vector<uint32_t> galois_elts;
  176. int N = enc_params_.poly_modulus_degree();
  177. int logN = get_power_of_two(N);
  178. //cout << "printing galois elements...";
  179. for (int i = 0; i < logN; i++) {
  180. galois_elts.push_back((N + exponentiate_uint(2, i)) / exponentiate_uint(2, i));
  181. //#ifdef DEBUG
  182. // cout << galois_elts.back() << ", ";
  183. //#endif
  184. }
  185. GaloisKeys gal_keys;
  186. keygen_->create_galois_keys(galois_elts, gal_keys);
  187. return gal_keys;
  188. }
  189. Ciphertext PIRClient::compose_to_ciphertext(vector<Plaintext> plains) {
  190. size_t encrypted_count = 2;
  191. auto coeff_count = enc_params_.poly_modulus_degree();
  192. auto coeff_mod_count = enc_params_.coeff_modulus().size();
  193. uint64_t plainMod = enc_params_.plain_modulus().value();
  194. int logt = floor(log2(plainMod));
  195. Ciphertext result(*context_);
  196. result.resize(encrypted_count);
  197. // A triple for loop. Going over polys, moduli, and decomposed index.
  198. for (int i = 0; i < encrypted_count; i++) {
  199. uint64_t *encrypted_pointer = result.data(i);
  200. for (int j = 0; j < coeff_mod_count; j++) {
  201. // populate one poly at a time.
  202. // create a polynomial to store the current decomposition value
  203. // which will be copied into the array to populate it at the current
  204. // index.
  205. double logqj = log2(enc_params_.coeff_modulus()[j].value());
  206. int expansion_ratio = ceil(logqj / logt);
  207. uint64_t cur = 1;
  208. // cout << "Client: expansion_ratio = " << expansion_ratio << endl;
  209. for (int k = 0; k < expansion_ratio; k++) {
  210. // Compose here
  211. const uint64_t *plain_coeff =
  212. plains[k + j * (expansion_ratio) + i * (coeff_mod_count * expansion_ratio)]
  213. .data();
  214. for (int m = 0; m < coeff_count; m++) {
  215. if (k == 0) {
  216. *(encrypted_pointer + m + j * coeff_count) = *(plain_coeff + m) * cur;
  217. } else {
  218. *(encrypted_pointer + m + j * coeff_count) += *(plain_coeff + m) * cur;
  219. }
  220. }
  221. cur <<= logt;
  222. }
  223. }
  224. }
  225. return result;
  226. }
  227. Plaintext PIRClient::replace_element(Plaintext pt, vector<uint64_t> new_element, uint64_t offset){
  228. vector<uint64_t> coeffs = extract_coeffs(pt);
  229. uint32_t logt = floor(log2(enc_params_.plain_modulus().value()));
  230. uint64_t coeffs_per_element = coefficients_per_element(logt, pir_params_.ele_size);
  231. assert(new_element.size() == coeffs_per_element);
  232. for(uint64_t i = 0; i < coeffs_per_element; i++){
  233. cout << "Replacing " << coeffs[i + offset * coeffs_per_element];
  234. cout << " with " << new_element[i] << endl;
  235. coeffs[i + offset * coeffs_per_element] = new_element[i];
  236. }
  237. Plaintext new_pt;
  238. encoder_->encode(coeffs, new_pt);
  239. return new_pt;
  240. }
  241. Ciphertext PIRClient::get_one(){
  242. Plaintext pt("1");
  243. Ciphertext ct;
  244. encryptor_->encrypt(pt, ct);
  245. return ct;
  246. }