|
@@ -0,0 +1,2689 @@
|
|
|
+#include <functional>
|
|
|
+
|
|
|
+#include "avl.hpp"
|
|
|
+
|
|
|
+void print_green(std::string line) {
|
|
|
+ printf("%s%s%s", KGRN, line.c_str(), KNRM);
|
|
|
+}
|
|
|
+
|
|
|
+void print_red(std::string line) {
|
|
|
+ printf("%s%s%s", KRED, line.c_str(), KNRM);
|
|
|
+}
|
|
|
+
|
|
|
+// Pretty-print a reconstructed BST, rooted at node. is_left_child and
|
|
|
+// is_right_child indicate whether node is a left or right child of its
|
|
|
+// parent. They cannot both be true, but the root of the tree has both
|
|
|
+// of them false.
|
|
|
+void AVL::pretty_print(const std::vector<Node> &R, value_t node,
|
|
|
+ const std::string &prefix = "", bool is_left_child = false,
|
|
|
+ bool is_right_child = false)
|
|
|
+{
|
|
|
+ if (node == 0) {
|
|
|
+ // NULL pointer
|
|
|
+ if (is_left_child) {
|
|
|
+ printf("%s\xE2\x95\xA7\n", prefix.c_str()); // ╧
|
|
|
+ } else if (is_right_child) {
|
|
|
+ printf("%s\xE2\x95\xA4\n", prefix.c_str()); // ╤
|
|
|
+ } else {
|
|
|
+ printf("%s\xE2\x95\xA2\n", prefix.c_str()); // ╢
|
|
|
+ }
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ const Node &n = R[node];
|
|
|
+ value_t left_ptr = getAVLLeftPtr(n.pointers).xshare;
|
|
|
+ value_t right_ptr = getAVLRightPtr(n.pointers).xshare;
|
|
|
+ std::string rightprefix(prefix), leftprefix(prefix),
|
|
|
+ nodeprefix(prefix);
|
|
|
+ if (is_left_child) {
|
|
|
+ rightprefix.append("\xE2\x94\x82"); // │
|
|
|
+ leftprefix.append(" ");
|
|
|
+ nodeprefix.append("\xE2\x94\x94"); // └
|
|
|
+ } else if (is_right_child) {
|
|
|
+ rightprefix.append(" ");
|
|
|
+ leftprefix.append("\xE2\x94\x82"); // │
|
|
|
+ nodeprefix.append("\xE2\x94\x8C"); // ┌
|
|
|
+ } else {
|
|
|
+ rightprefix.append(" ");
|
|
|
+ leftprefix.append(" ");
|
|
|
+ nodeprefix.append("\xE2\x94\x80"); // ─
|
|
|
+ }
|
|
|
+ pretty_print(R, right_ptr, rightprefix, false, true);
|
|
|
+ printf("%s\xE2\x94\xA4", nodeprefix.c_str()); // ┤
|
|
|
+ dumpAVL(n);
|
|
|
+ printf("\n");
|
|
|
+ pretty_print(R, left_ptr, leftprefix, true, false);
|
|
|
+}
|
|
|
+
|
|
|
+void AVL::print_oram(MPCTIO &tio, yield_t &yield) {
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+
|
|
|
+ for(size_t i=0;i<R.size();++i) {
|
|
|
+ printf("\n%04lx ", i);
|
|
|
+ R[i].dump();
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+}
|
|
|
+
|
|
|
+void AVL::pretty_print(MPCTIO &tio, yield_t &yield) {
|
|
|
+ RegXS peer_root;
|
|
|
+ RegXS reconstructed_root = root;
|
|
|
+ if (tio.player() == 1) {
|
|
|
+ tio.queue_peer(&root, sizeof(root));
|
|
|
+ } else {
|
|
|
+ RegXS peer_root;
|
|
|
+ tio.recv_peer(&peer_root, sizeof(peer_root));
|
|
|
+ reconstructed_root += peer_root;
|
|
|
+ }
|
|
|
+
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ if(tio.player()==0) {
|
|
|
+ pretty_print(R, reconstructed_root.xshare);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Check the BST invariant of the tree (that all keys to the left are
|
|
|
+// less than or equal to this key, all keys to the right are strictly
|
|
|
+// greater, and this is true recursively). Returns a
|
|
|
+// tuple<bool,address_t>, where the bool says whether the BST invariant
|
|
|
+// holds, and the address_t is the height of the tree (which will be
|
|
|
+// useful later when we check AVL trees).
|
|
|
+std::tuple<bool, bool, address_t> AVL::check_avl(const std::vector<Node> &R,
|
|
|
+ value_t node, value_t min_key = 0, value_t max_key = ~0)
|
|
|
+{
|
|
|
+ if (node == 0) {
|
|
|
+ return { true, true, 0 };
|
|
|
+ }
|
|
|
+ const Node &n = R[node];
|
|
|
+ value_t key = n.key.ashare;
|
|
|
+ value_t left_ptr = getAVLLeftPtr(n.pointers).xshare;
|
|
|
+ value_t right_ptr = getAVLRightPtr(n.pointers).xshare;
|
|
|
+ auto [leftok, leftavlok, leftheight ] = check_avl(R, left_ptr, min_key, key);
|
|
|
+ auto [rightok, rightavlok, rightheight ] = check_avl(R, right_ptr, key+1, max_key);
|
|
|
+ address_t height = leftheight;
|
|
|
+ if (rightheight > height) {
|
|
|
+ height = rightheight;
|
|
|
+ }
|
|
|
+ height += 1;
|
|
|
+ int heightgap = leftheight - rightheight;
|
|
|
+ bool avlok = (abs(heightgap)<2);
|
|
|
+ //printf("node = %ld, leftok = %d, rightok = %d\n", node, leftok, rightok);
|
|
|
+ return { leftok && rightok && key >= min_key && key <= max_key,
|
|
|
+ avlok && leftavlok && rightavlok, height};
|
|
|
+}
|
|
|
+
|
|
|
+void AVL::check_avl(MPCTIO &tio, yield_t &yield) {
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+
|
|
|
+ RegXS rec_root = this->root;
|
|
|
+ if (tio.player() == 1) {
|
|
|
+ tio.queue_peer(&(this->root), sizeof(this->root));
|
|
|
+ } else {
|
|
|
+ RegXS peer_root;
|
|
|
+ tio.recv_peer(&peer_root, sizeof(peer_root));
|
|
|
+ rec_root+= peer_root;
|
|
|
+ }
|
|
|
+ if (tio.player() == 0) {
|
|
|
+ auto [ bst_ok, avl_ok, height ] = check_avl(R, rec_root.xshare);
|
|
|
+ printf("BST structure %s\nAVL structure %s\nTree height = %u\n",
|
|
|
+ bst_ok ? "ok" : "NOT OK", avl_ok ? "ok" : "NOT OK", height);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void AVL::initialize(int num_players, size_t size) {
|
|
|
+ this->MAX_SIZE = size;
|
|
|
+ oram = new Duoram<Node>(num_players, size);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Rotate: (gp = grandparent (if exists), p = parent, c = child)
|
|
|
+
|
|
|
+ This rotates the p -> c link.
|
|
|
+
|
|
|
+ gp gp
|
|
|
+ \ \
|
|
|
+ p --- Left rotate ---> c
|
|
|
+ \ /
|
|
|
+ c p
|
|
|
+
|
|
|
+
|
|
|
+ gp gp
|
|
|
+ \ \
|
|
|
+ p --- Right rotate ---> c
|
|
|
+ / \
|
|
|
+ c p
|
|
|
+
|
|
|
+*/
|
|
|
+void AVL::rotate(MPCTIO &tio, yield_t &yield, RegXS &gp_pointers, RegXS p_ptr,
|
|
|
+ RegXS &p_pointers, RegXS c_ptr, RegXS &c_pointers, RegBS dir_gpp,
|
|
|
+ RegBS dir_pc, RegBS isReal, RegBS F_gp) {
|
|
|
+
|
|
|
+ bool player0 = tio.player()==0;
|
|
|
+ RegXS gp_left = getAVLLeftPtr(gp_pointers);
|
|
|
+ RegXS gp_right = getAVLRightPtr(gp_pointers);
|
|
|
+ RegXS p_left = getAVLLeftPtr(p_pointers);
|
|
|
+ RegXS p_right = getAVLRightPtr(p_pointers);
|
|
|
+ RegXS c_left = getAVLLeftPtr(c_pointers);
|
|
|
+ RegXS c_right = getAVLRightPtr(c_pointers);
|
|
|
+ RegXS ptr_upd;
|
|
|
+
|
|
|
+ // F_gpp: Flag to update gp -> p link, F_pc: Flag to update p -> c link
|
|
|
+ RegBS F_gpp, F_pc, F_gppr, F_gppl;
|
|
|
+ // We care about !F_gp. If !F_gp, then we do the gp->p link updates.
|
|
|
+ // Otherwise, we do NOT do any updates to gp-> p link;
|
|
|
+ // since F_gp==1, implies gp does not exist and parent is root.
|
|
|
+ if(player0)
|
|
|
+ F_gp^=1;
|
|
|
+ mpc_and(tio, yield, F_gpp, F_gp, isReal);
|
|
|
+
|
|
|
+ // i) gp[dir_gpp] <-- c_ptr
|
|
|
+ mpc_select(tio, yield, ptr_upd, F_gpp, p_ptr, c_ptr);
|
|
|
+ mpc_and(tio, yield, F_gppr, F_gpp, dir_gpp);
|
|
|
+ mpc_select(tio, yield, gp_right, F_gppr, gp_right, ptr_upd);
|
|
|
+ if(player0)
|
|
|
+ dir_gpp^=1;
|
|
|
+ mpc_and(tio, yield, F_gppl, F_gpp, dir_gpp);
|
|
|
+ mpc_select(tio, yield, gp_left, F_gppl, gp_left, ptr_upd);
|
|
|
+ setAVLLeftPtr(gp_pointers, gp_left);
|
|
|
+ setAVLRightPtr(gp_pointers, gp_right);
|
|
|
+
|
|
|
+ // ii) p[dir_pc] <-- c[!dir_pc] and iii) c[!dir_pc] <-- p_ptr
|
|
|
+ RegBS not_dir_pc = dir_pc;
|
|
|
+ if(player0)
|
|
|
+ not_dir_pc^=1;
|
|
|
+ RegXS c_not_dir_pc; //c[!dir_pc]
|
|
|
+ // ndpc_right: if not_dir_pc is right
|
|
|
+ // ndpc_left: if not_dir_pc is left
|
|
|
+ RegBS F_ndpc_right, F_ndpc_left;
|
|
|
+ mpc_and(tio, yield, F_ndpc_right, isReal, not_dir_pc);
|
|
|
+ mpc_select(tio, yield, c_not_dir_pc, F_ndpc_right, c_not_dir_pc, c_right, AVL_PTR_SIZE);
|
|
|
+ // Negating not_dir_pc to handle left case
|
|
|
+ if(player0)
|
|
|
+ not_dir_pc^=1;
|
|
|
+ mpc_and(tio, yield, F_ndpc_left, isReal, not_dir_pc);
|
|
|
+ mpc_select(tio, yield, c_not_dir_pc, F_ndpc_left, c_not_dir_pc, c_left, AVL_PTR_SIZE);
|
|
|
+ // Now c_not_dir_pc = c[!dir_pc]
|
|
|
+
|
|
|
+ // ii) p[dir_pc] <-- c[!dir_pc]
|
|
|
+ mpc_select(tio, yield, p_left, F_ndpc_right, p_left, c_not_dir_pc, AVL_PTR_SIZE);
|
|
|
+ mpc_select(tio, yield, p_right, F_ndpc_left, p_right, c_not_dir_pc, AVL_PTR_SIZE);
|
|
|
+ setAVLLeftPtr(p_pointers, p_left);
|
|
|
+ setAVLRightPtr(p_pointers, p_right);
|
|
|
+
|
|
|
+ // iii): c[!dir_pc] <-- p_ptr
|
|
|
+ mpc_select(tio, yield, ptr_upd, isReal, c_not_dir_pc, p_ptr, AVL_PTR_SIZE);
|
|
|
+ mpc_and(tio, yield, F_pc, dir_pc, isReal);
|
|
|
+ mpc_select(tio, yield, c_left, F_pc, c_left, ptr_upd, AVL_PTR_SIZE);
|
|
|
+ if(player0)
|
|
|
+ dir_pc^=1;
|
|
|
+ // dir_pc <-- !dir_pc
|
|
|
+ mpc_and(tio, yield, F_pc, dir_pc, isReal);
|
|
|
+ mpc_select(tio, yield, c_right, F_pc, c_right, ptr_upd, AVL_PTR_SIZE);
|
|
|
+ setAVLLeftPtr(c_pointers, c_left);
|
|
|
+ setAVLRightPtr(c_pointers, c_right);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ In updateBalanceDel, the position of imbalance, and shift direction for both
|
|
|
+ cases are inverted, since a bal_upd on a child implies it reduced height.
|
|
|
+ If F_rs: (bal_upd & right_child)
|
|
|
+ imbalance, bal_l, balanced, bal_r
|
|
|
+ And then left shift to get imbalance bit, and new bal_l, bal_r bits
|
|
|
+ else if F_ls: (bal_upd & left_child)
|
|
|
+ bal_l, balanced, bal_r, imbalance
|
|
|
+ And then right shift to get imbalance bit, and new bal_l, bal_r bits
|
|
|
+
|
|
|
+*/
|
|
|
+std::tuple<RegBS, RegBS, RegBS, RegBS> AVL::updateBalanceDel(MPCTIO &tio, yield_t &yield,
|
|
|
+ RegBS bal_l, RegBS bal_r, RegBS bal_upd, RegBS child_dir) {
|
|
|
+ bool player0 = tio.player()==0;
|
|
|
+ RegBS s0;
|
|
|
+ RegBS F_rs, F_ls, balanced, imbalance;
|
|
|
+
|
|
|
+ /*
|
|
|
+ bool rec_bal_l, rec_bal_r, rec_bal_upd;
|
|
|
+ rec_bal_l = reconstruct_RegBS(tio, yield, bal_l);
|
|
|
+ rec_bal_r = reconstruct_RegBS(tio, yield, bal_r);
|
|
|
+ rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
|
|
|
+ printf("In updateBalanceDel, beforeBalance: rec_bal_l = %d, rec_bal_r = %d, rec_bal_upd = %d\n",
|
|
|
+ rec_bal_l, rec_bal_r, rec_bal_upd);
|
|
|
+ */
|
|
|
+
|
|
|
+ // balanced = is the node currently balanced
|
|
|
+ balanced = bal_l ^ bal_r;
|
|
|
+ //F_ls (Flag left shift) <- child_dir & bal_upd
|
|
|
+ mpc_and(tio, yield, F_ls, child_dir, bal_upd);
|
|
|
+ if(player0) {
|
|
|
+ child_dir^=1;
|
|
|
+ balanced^=1;
|
|
|
+ }
|
|
|
+ //F_rs (Flag right shift) <- !child_dir & bal_upd
|
|
|
+ mpc_and(tio, yield, F_rs, child_dir, bal_upd);
|
|
|
+
|
|
|
+ /*
|
|
|
+ bool rec_F_ls, rec_F_rs;
|
|
|
+ rec_F_ls = reconstruct_RegBS(tio, yield, F_ls);
|
|
|
+ rec_F_rs = reconstruct_RegBS(tio, yield, F_rs);
|
|
|
+ printf("In updateBalanceDel: rec_F_ls = %d, rec_F_rs = %d\n",
|
|
|
+ rec_F_ls, rec_F_rs);
|
|
|
+ */
|
|
|
+
|
|
|
+ // Left shift if F_ls
|
|
|
+ mpc_select(tio, yield, imbalance, F_ls, imbalance, bal_l);
|
|
|
+ mpc_select(tio, yield, bal_l, F_ls, bal_l, balanced);
|
|
|
+ mpc_select(tio, yield, balanced, F_ls, balanced, bal_r);
|
|
|
+ mpc_select(tio, yield, bal_r, F_ls, bal_r, s0);
|
|
|
+
|
|
|
+ // Right shift if F_rs
|
|
|
+ mpc_select(tio, yield, imbalance, F_rs, imbalance, bal_r);
|
|
|
+ mpc_select(tio, yield, bal_r, F_rs, bal_r, balanced);
|
|
|
+ mpc_select(tio, yield, balanced, F_rs, balanced, bal_l);
|
|
|
+ mpc_select(tio, yield, bal_l, F_rs, bal_l, s0);
|
|
|
+
|
|
|
+ /*
|
|
|
+ rec_bal_l = reconstruct_RegBS(tio, yield, bal_l);
|
|
|
+ rec_bal_r = reconstruct_RegBS(tio, yield, bal_r);
|
|
|
+ rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
|
|
|
+ printf("In updateBalanceDel, afterBalance: rec_bal_l = %d, rec_bal_r = %d, rec_bal_upd = %d\n",
|
|
|
+ rec_bal_l, rec_bal_r, rec_bal_upd);
|
|
|
+ */
|
|
|
+
|
|
|
+ // if(bal_upd) and not imbalance bal_upd<-0
|
|
|
+ RegBS bu0;
|
|
|
+ if(player0){
|
|
|
+ imbalance^=1;
|
|
|
+ }
|
|
|
+ mpc_and(tio, yield, bu0, bal_upd, imbalance);
|
|
|
+ mpc_select(tio, yield, bal_upd, bu0, bal_upd, s0);
|
|
|
+ if(player0){
|
|
|
+ imbalance^=1;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Any bal_upd, propogates all the way up to root
|
|
|
+ return {bal_l, bal_r, bal_upd, imbalance};
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ If F_rs: (bal_upd & right_child)
|
|
|
+ bal_l, balanced, bal_r, imbalance
|
|
|
+ And then right shift to get imbalance bit, and new bal_l, bal_r bits
|
|
|
+ else if F_ls: (bal_upd & left_child)
|
|
|
+ imbalance, bal_l, balanced, bal_r
|
|
|
+ And then left shift to get imbalance bit, and new bal_l, bal_r bits
|
|
|
+
|
|
|
+*/
|
|
|
+std::tuple<RegBS, RegBS, RegBS, RegBS> AVL::updateBalanceIns(MPCTIO &tio, yield_t &yield,
|
|
|
+ RegBS bal_l, RegBS bal_r, RegBS bal_upd, RegBS child_dir) {
|
|
|
+ bool player0 = tio.player()==0;
|
|
|
+ RegBS s1, s0;
|
|
|
+ s1.set(tio.player()==1);
|
|
|
+ RegBS F_rs, F_ls, balanced, imbalance;
|
|
|
+
|
|
|
+ // balanced = is the node currently balanced
|
|
|
+ balanced = bal_l ^ bal_r;
|
|
|
+ //F_rs (Flag right shift) <- child_dir & bal_upd
|
|
|
+ mpc_and(tio, yield, F_rs, child_dir, bal_upd);
|
|
|
+ if(player0) {
|
|
|
+ child_dir^=1;
|
|
|
+ balanced^=1;
|
|
|
+ }
|
|
|
+ //F_ls (Flag left shift) <- !child_dir & bal_upd
|
|
|
+ mpc_and(tio, yield, F_ls, child_dir, bal_upd);
|
|
|
+
|
|
|
+ // Right shift if child_dir = 1 & bal_upd = 1
|
|
|
+ mpc_select(tio, yield, imbalance, F_rs, imbalance, bal_r);
|
|
|
+ mpc_select(tio, yield, bal_r, F_rs, bal_r, balanced);
|
|
|
+ mpc_select(tio, yield, balanced, F_rs, balanced, bal_l);
|
|
|
+ mpc_select(tio, yield, bal_l, F_rs, bal_l, s0);
|
|
|
+
|
|
|
+ // Left shift if child_dir = 0 & bal_upd = 1
|
|
|
+ mpc_select(tio, yield, imbalance, F_ls, imbalance, bal_l);
|
|
|
+ mpc_select(tio, yield, bal_l, F_ls, bal_l, balanced);
|
|
|
+ mpc_select(tio, yield, balanced, F_ls, balanced, bal_r);
|
|
|
+ mpc_select(tio, yield, bal_r, F_ls, bal_r, s0);
|
|
|
+
|
|
|
+ // bal_upd' <- bal_upd ^ imbalance
|
|
|
+ RegBS F_bu0;
|
|
|
+ mpc_and(tio, yield, F_bu0, bal_upd, balanced);
|
|
|
+ mpc_select(tio, yield, bal_upd, F_bu0, bal_upd, s0);
|
|
|
+ mpc_select(tio, yield, bal_upd, imbalance, bal_upd, s0);
|
|
|
+ return {bal_l, bal_r, bal_upd, imbalance};
|
|
|
+}
|
|
|
+
|
|
|
+std::tuple<RegBS, RegBS, RegXS, RegBS> AVL::insert(MPCTIO &tio, yield_t &yield, RegXS ptr,
|
|
|
+ RegAS insert_key, Duoram<Node>::Flat &A, int TTL, RegBS isDummy, avl_insert_return *ret) {
|
|
|
+ if(TTL==0) {
|
|
|
+ RegBS z;
|
|
|
+ return {z, z, z, z};
|
|
|
+ }
|
|
|
+
|
|
|
+ RegBS isReal = isDummy ^ (tio.player());
|
|
|
+ Node cnode = A[ptr];
|
|
|
+ // Compare key
|
|
|
+ auto [lteq, gt] = compare_keys(tio, yield, cnode.key, insert_key);
|
|
|
+
|
|
|
+ // Depending on [lteq, gt] select the next_ptr
|
|
|
+ RegXS next_ptr;
|
|
|
+ RegXS left = getAVLLeftPtr(cnode.pointers);
|
|
|
+ RegXS right = getAVLRightPtr(cnode.pointers);
|
|
|
+ RegBS bal_l = getLeftBal(cnode.pointers);
|
|
|
+ RegBS bal_r = getRightBal(cnode.pointers);
|
|
|
+ /*
|
|
|
+ size_t rec_left = reconstruct_RegXS(tio, yield, left);
|
|
|
+ size_t rec_right = reconstruct_RegXS(tio, yield, right);
|
|
|
+ size_t rec_key = reconstruct_RegAS(tio, yield, cnode.key);
|
|
|
+ printf("\n\nKey = %ld\n", rec_key);
|
|
|
+ printf("rec_left = %ld, rec_right = %ld\n", rec_left, rec_right);
|
|
|
+ */
|
|
|
+
|
|
|
+ mpc_select(tio, yield, next_ptr, gt, left, right, AVL_PTR_SIZE);
|
|
|
+ /*
|
|
|
+ size_t rec_next_ptr = reconstruct_RegXS(tio, yield, next_ptr);
|
|
|
+ printf("rec_next_ptr = %ld\n", rec_next_ptr);
|
|
|
+ */
|
|
|
+
|
|
|
+ CDPF dpf = tio.cdpf(yield);
|
|
|
+ size_t &aes_ops = tio.aes_ops();
|
|
|
+ // F_z: Check if this is last node on path
|
|
|
+ RegBS F_z = dpf.is_zero(tio, yield, next_ptr, aes_ops);
|
|
|
+ RegBS F_i;
|
|
|
+
|
|
|
+ // F_i: If this was last node on path (F_z), and isReal insert.
|
|
|
+ mpc_and(tio, yield, F_i, (isReal), F_z);
|
|
|
+
|
|
|
+ isDummy^=F_i;
|
|
|
+ auto [bal_upd, F_gp, prev_node, prev_dir] = insert(tio, yield,
|
|
|
+ next_ptr, insert_key, A, TTL-1, isDummy, ret);
|
|
|
+ /*
|
|
|
+ rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
|
|
|
+ rec_F_gp = reconstruct_RegBS(tio, yield, F_gp);
|
|
|
+ printf("Insert returns: rec_bal_upd = %d, rec_F_gp = %d\n",
|
|
|
+ rec_bal_upd, rec_F_gp);
|
|
|
+ size_t rec_ptr = reconstruct_RegXS(tio, yield, ptr);
|
|
|
+ printf("\nrec_ptr = %ld\n", rec_ptr);
|
|
|
+ */
|
|
|
+
|
|
|
+ // Save insertion pointer and direction
|
|
|
+ mpc_select(tio, yield, ret->i_node, F_i, ret->i_node, ptr, AVL_PTR_SIZE);
|
|
|
+ mpc_select(tio, yield, ret->dir_i, F_i, ret->dir_i, gt);
|
|
|
+
|
|
|
+ // Update balance
|
|
|
+ // If we inserted at this level (F_i), bal_upd is set to 1
|
|
|
+ mpc_or(tio, yield, bal_upd, bal_upd, F_i);
|
|
|
+ auto [new_bal_l, new_bal_r, new_bal_upd, imbalance] = updateBalanceIns(tio, yield, bal_l, bal_r, bal_upd, gt);
|
|
|
+
|
|
|
+ // Store if this insert triggers an imbalance
|
|
|
+ ret->imbalance ^= imbalance;
|
|
|
+
|
|
|
+ // Save grandparent pointer
|
|
|
+ mpc_select(tio, yield, ret->gp_node, F_gp, ret->gp_node, ptr, AVL_PTR_SIZE);
|
|
|
+ mpc_select(tio, yield, ret->dir_gpp, F_gp, ret->dir_gpp, gt);
|
|
|
+
|
|
|
+ // Save parent pointer
|
|
|
+ mpc_select(tio, yield, ret->p_node, imbalance, ret->p_node, ptr, AVL_PTR_SIZE);
|
|
|
+ mpc_select(tio, yield, ret->dir_pc, imbalance, ret->dir_pc, gt);
|
|
|
+
|
|
|
+ // Save child pointer
|
|
|
+ mpc_select(tio, yield, ret->c_node, imbalance, ret->c_node, prev_node, AVL_PTR_SIZE);
|
|
|
+ mpc_select(tio, yield, ret->dir_cn, imbalance, ret->dir_cn, prev_dir);
|
|
|
+
|
|
|
+ // Store new_bal_l and new_bal_r for this node
|
|
|
+ // but this can be handled in the rotation component in one shot,
|
|
|
+ // since insertion rotations always resolve with p,c having 0,0 balance
|
|
|
+
|
|
|
+ setLeftBal(cnode.pointers, new_bal_l);
|
|
|
+ setRightBal(cnode.pointers, new_bal_r);
|
|
|
+ A[ptr].NODE_POINTERS = cnode.pointers;
|
|
|
+
|
|
|
+ // s0 = shares of 0
|
|
|
+ RegBS s0;
|
|
|
+
|
|
|
+ // Update F_gp flag: If there was an imbalance then we set this to store
|
|
|
+ // the grandparent node (node in the level above) into the ret_struct
|
|
|
+ mpc_select(tio, yield, F_gp, imbalance, s0, imbalance);
|
|
|
+
|
|
|
+ return {new_bal_upd, F_gp, ptr, gt};
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+// Insert(root, ptr, key, TTL, isDummy) -> (new_ptr, wptr, wnode, f_p)
|
|
|
+void AVL::insert(MPCTIO &tio, yield_t &yield, const Node &node) {
|
|
|
+ bool player0 = tio.player()==0;
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ // If there are no items in tree. Make this new item the root.
|
|
|
+ if(num_items==0) {
|
|
|
+ Node zero;
|
|
|
+ A[0] = zero;
|
|
|
+ A[1] = node;
|
|
|
+ (root).set(1*tio.player());
|
|
|
+ num_items++;
|
|
|
+ return;
|
|
|
+ } else {
|
|
|
+ // Insert node into next free slot in the ORAM
|
|
|
+ int new_id;
|
|
|
+ RegXS insert_address;
|
|
|
+ num_items++;
|
|
|
+ int TTL = AVL_TTL(num_items);
|
|
|
+ bool insertAtEmptyLocation = (numEmptyLocations() > 0);
|
|
|
+ if(insertAtEmptyLocation) {
|
|
|
+ insert_address = empty_locations.back();
|
|
|
+ empty_locations.pop_back();
|
|
|
+ A[insert_address] = node;
|
|
|
+ } else {
|
|
|
+ new_id = num_items;
|
|
|
+ A[new_id] = node;
|
|
|
+ insert_address.set(new_id * tio.player());
|
|
|
+ }
|
|
|
+
|
|
|
+ RegBS isDummy;
|
|
|
+ avl_insert_return ret;
|
|
|
+ RegAS insert_key = node.key;
|
|
|
+ // Recursive insert function
|
|
|
+ auto [bal_upd, F_gp, prev_node, prev_dir] = insert(tio, yield, root, insert_key, A, TTL, isDummy, &ret);
|
|
|
+ /*
|
|
|
+ // Debug code
|
|
|
+ bool rec_bal_upd, rec_F_gp, ret_dir_pc, ret_dir_cn;
|
|
|
+ rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
|
|
|
+ rec_F_gp = reconstruct_RegBS(tio, yield, F_gp);
|
|
|
+ ret_dir_pc = reconstruct_RegBS(tio, yield, ret.dir_pc);
|
|
|
+ ret_dir_cn = reconstruct_RegBS(tio, yield, ret.dir_cn);
|
|
|
+ printf("(Top level) Insert returns: rec_bal_upd = %d, rec_F_gp = %d\n",
|
|
|
+ rec_bal_upd, rec_F_gp);
|
|
|
+ printf("(Top level) Insert returns: ret.dir_pc = %d, rt.dir_cn = %d\n",
|
|
|
+ ret_dir_pc, ret_dir_cn);
|
|
|
+ */
|
|
|
+
|
|
|
+ // Perform actual insertion
|
|
|
+ RegXS ins_pointers = A[ret.i_node].NODE_POINTERS;
|
|
|
+ RegXS left_ptr = getAVLLeftPtr(ins_pointers);
|
|
|
+ RegXS right_ptr = getAVLRightPtr(ins_pointers);
|
|
|
+ mpc_select(tio, yield, right_ptr, ret.dir_i, right_ptr, insert_address, AVL_PTR_SIZE);
|
|
|
+ // ret.dir_i -> !(ret.dir_i)
|
|
|
+ if(player0) {
|
|
|
+ ret.dir_i^=1;
|
|
|
+ }
|
|
|
+ mpc_select(tio, yield, left_ptr, ret.dir_i, left_ptr, insert_address, AVL_PTR_SIZE);
|
|
|
+ // We never use ret.dir_i again, so don't bother reverting the negation above.
|
|
|
+ setAVLLeftPtr(ins_pointers, left_ptr);
|
|
|
+ setAVLRightPtr(ins_pointers, right_ptr);
|
|
|
+ A[ret.i_node].NODE_POINTERS = ins_pointers;
|
|
|
+
|
|
|
+ // Perform balance procedure
|
|
|
+ RegXS gp_pointers = A[ret.gp_node].NODE_POINTERS;
|
|
|
+ RegXS parent_pointers = A[ret.p_node].NODE_POINTERS;
|
|
|
+ RegXS child_pointers = A[ret.c_node].NODE_POINTERS;
|
|
|
+ // n_node (child's next node)
|
|
|
+ RegXS child_left = getAVLLeftPtr(child_pointers);
|
|
|
+ RegXS child_right = getAVLRightPtr(child_pointers);
|
|
|
+ RegXS n_node;
|
|
|
+ mpc_select(tio, yield, n_node, ret.dir_cn, n_node, child_right, AVL_PTR_SIZE);
|
|
|
+ // dir_cn -> !(dir_cn); to handle left case
|
|
|
+ if(player0) {
|
|
|
+ ret.dir_cn^=1;
|
|
|
+ }
|
|
|
+ mpc_select(tio, yield, n_node, ret.dir_cn, n_node, child_left, AVL_PTR_SIZE);
|
|
|
+ // Undo dir_cn negation
|
|
|
+ if(player0) {
|
|
|
+ ret.dir_cn^=1;
|
|
|
+ }
|
|
|
+ RegXS n_pointers = A[n_node].NODE_POINTERS;
|
|
|
+
|
|
|
+ // F_dr = (dir_pc != dir_cn) : i.e., double rotation case if
|
|
|
+ // (parent->child) and (child->new_node) are not in the same direction
|
|
|
+ RegBS F_dr = (ret.dir_pc) ^ (ret.dir_cn);
|
|
|
+
|
|
|
+ /* Flags: F_cn_rot = child->node rotate
|
|
|
+ F_ur = update root.
|
|
|
+
|
|
|
+ In case of an imbalance we have to always rotate p->c link. (L or R case)
|
|
|
+ In case of an imbalance where p->c and c->n are in different directions, we have
|
|
|
+ to perform a double rotation (LR or RL case). In such cases, first rotate
|
|
|
+ c->n link, and then p->c link
|
|
|
+ (Note: in the second rotation c is actually n, since the the first rotation
|
|
|
+ swaps their positions)
|
|
|
+ */
|
|
|
+ RegBS F_cn_rot, F_ur;
|
|
|
+ mpc_and(tio, yield, F_ur, F_gp, ret.imbalance);
|
|
|
+ mpc_and(tio, yield, F_cn_rot, ret.imbalance, F_dr);
|
|
|
+ RegBS s0;
|
|
|
+
|
|
|
+ // Get the n children information for 2nd rotate fix before rotations happen.
|
|
|
+ RegBS n_bal_l, n_bal_r;
|
|
|
+ RegXS n_l = getAVLLeftPtr(n_pointers);
|
|
|
+ RegXS n_r = getAVLRightPtr(n_pointers);
|
|
|
+ n_bal_l = getLeftBal(n_pointers);
|
|
|
+ n_bal_r = getRightBal(n_pointers);
|
|
|
+
|
|
|
+ // First rotation: c->n link
|
|
|
+ rotate(tio, yield, parent_pointers, ret.c_node, child_pointers, n_node,
|
|
|
+ n_pointers, ret.dir_pc, ret.dir_cn, F_cn_rot, s0);
|
|
|
+
|
|
|
+ // If F_cn_rot, i.e. we did first rotation. Then c and n need to swap before the second rotate.
|
|
|
+ RegXS new_child_pointers, new_child;
|
|
|
+ mpc_select(tio, yield, new_child_pointers, F_cn_rot, child_pointers, n_pointers);
|
|
|
+ mpc_select(tio, yield, new_child, F_cn_rot, ret.c_node, n_node, AVL_PTR_SIZE);
|
|
|
+
|
|
|
+ // Second rotation: p->c link
|
|
|
+ rotate(tio, yield, gp_pointers, ret.p_node, parent_pointers, new_child,
|
|
|
+ new_child_pointers, ret.dir_gpp, ret.dir_pc, ret.imbalance, F_gp);
|
|
|
+
|
|
|
+ // Set parent and child balances to 0 if there was an imbalance.
|
|
|
+ // parent balances are already set to 0 from updateBalanceIns
|
|
|
+ RegBS temp_bal, p_bal_l, p_bal_r, p_bal_ndpc;
|
|
|
+ RegBS c_bal_l, c_bal_r, c_bal_dpc, n_bal_dpc, n_bal_ndpc;
|
|
|
+ p_bal_l = getLeftBal(parent_pointers);
|
|
|
+ p_bal_r = getRightBal(parent_pointers);
|
|
|
+
|
|
|
+ mpc_select(tio, yield, child_pointers, F_cn_rot, new_child_pointers, child_pointers);
|
|
|
+ mpc_select(tio, yield, n_pointers, F_cn_rot, n_pointers, new_child_pointers);
|
|
|
+
|
|
|
+ c_bal_l = getLeftBal(child_pointers);
|
|
|
+ c_bal_r = getRightBal(child_pointers);
|
|
|
+ mpc_select(tio, yield, c_bal_l, ret.imbalance, c_bal_l, s0);
|
|
|
+ mpc_select(tio, yield, c_bal_r, ret.imbalance, c_bal_r, s0);
|
|
|
+
|
|
|
+ /* In the double rotation case: balance of c and p have a tweak
|
|
|
+ p_bal_ndpc <- !(n_bal_ndpc)
|
|
|
+ c_bal_dpc <- !(n_bal_dpc) */
|
|
|
+ CDPF cdpf = tio.cdpf(yield);
|
|
|
+ size_t &aes_ops = tio.aes_ops();
|
|
|
+ RegBS n_l0 = cdpf.is_zero(tio, yield, n_l, aes_ops);
|
|
|
+ RegBS n_r0 = cdpf.is_zero(tio, yield, n_r, aes_ops);
|
|
|
+ RegBS p_c_update, n_has_children;
|
|
|
+ // n_has_children = !(n_l0 & n_r0)
|
|
|
+ mpc_and(tio, yield, n_has_children, n_l0, n_r0);
|
|
|
+ if(player0) {
|
|
|
+ n_has_children^=1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ bool rec_n_l0, rec_n_r0, rec_n_hc;
|
|
|
+ rec_n_l0 = reconstruct_RegBS(tio, yield, n_l0);
|
|
|
+ rec_n_r0 = reconstruct_RegBS(tio, yield, n_r0);
|
|
|
+ rec_n_hc = reconstruct_RegBS(tio, yield, n_has_children);
|
|
|
+ printf("n_l0 = %d, n_r0 = %d, n_has_children = %d\n", rec_n_l0, rec_n_r0, rec_n_hc);
|
|
|
+ */
|
|
|
+
|
|
|
+ mpc_and(tio, yield, p_c_update, F_cn_rot, n_has_children);
|
|
|
+ mpc_select(tio, yield, n_bal_ndpc, ret.dir_pc, n_bal_r, n_bal_l);
|
|
|
+ mpc_select(tio, yield, n_bal_dpc, ret.dir_pc, n_bal_l, n_bal_r);
|
|
|
+ mpc_select(tio, yield, p_bal_ndpc, ret.dir_pc, p_bal_r, p_bal_l);
|
|
|
+ // !n_bal_ndpc, !n_bal_dpc
|
|
|
+ if(player0) {
|
|
|
+ n_bal_ndpc^=1;
|
|
|
+ n_bal_dpc^=1;
|
|
|
+ }
|
|
|
+ mpc_select(tio, yield, p_bal_ndpc, p_c_update, p_bal_ndpc, n_bal_ndpc);
|
|
|
+ mpc_select(tio, yield, c_bal_dpc, p_c_update, c_bal_dpc, n_bal_dpc);
|
|
|
+
|
|
|
+ mpc_select(tio, yield, p_bal_r, ret.dir_pc, p_bal_ndpc, p_bal_r);
|
|
|
+ mpc_select(tio, yield, p_bal_l, ret.dir_pc, p_bal_l, p_bal_ndpc);
|
|
|
+ mpc_select(tio, yield, c_bal_r, ret.dir_pc, c_bal_r, c_bal_dpc);
|
|
|
+ mpc_select(tio, yield, c_bal_l, ret.dir_pc, c_bal_dpc, c_bal_l);
|
|
|
+
|
|
|
+ setLeftBal(parent_pointers, p_bal_l);
|
|
|
+ setRightBal(parent_pointers, p_bal_r);
|
|
|
+ setLeftBal(child_pointers, c_bal_l);
|
|
|
+ setRightBal(child_pointers, c_bal_r);
|
|
|
+
|
|
|
+ // Write back update pointers and balances into gp, p, c, and n
|
|
|
+ A[ret.c_node].NODE_POINTERS = child_pointers;
|
|
|
+ A[ret.p_node].NODE_POINTERS = parent_pointers;
|
|
|
+ A[ret.gp_node].NODE_POINTERS = gp_pointers;
|
|
|
+ A[n_node].NODE_POINTERS = n_pointers;
|
|
|
+
|
|
|
+ // Handle root pointer switch (if F_gp is true in the return from insert())
|
|
|
+ // If F_gp and we did a double rotation: root <-- new node
|
|
|
+ // If F_gp and we did a single rotation: root <-- child node
|
|
|
+ mpc_select(tio, yield, root, F_ur, root, ret.c_node, AVL_PTR_SIZE);
|
|
|
+ mpc_and(tio, yield, F_ur, F_gp, F_dr);
|
|
|
+ mpc_select(tio, yield, root, F_ur, root, n_node, AVL_PTR_SIZE);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+bool BST::lookup(MPCTIO &tio, yield_t &yield, RegXS ptr, RegAS key, Duoram<Node>::Flat &A,
|
|
|
+ int TTL, RegBS isDummy, Node *ret_node) {
|
|
|
+ if(TTL==0) {
|
|
|
+ // Reconstruct and return isDummy
|
|
|
+ // If we found the key, then isDummy will be true
|
|
|
+ bool found = reconstruct_RegBS(tio, yield, isDummy);
|
|
|
+ return found;
|
|
|
+ }
|
|
|
+
|
|
|
+ RegBS isNotDummy = isDummy ^ (tio.player());
|
|
|
+ Node cnode = A[ptr];
|
|
|
+ // Compare key
|
|
|
+ CDPF cdpf = tio.cdpf(yield);
|
|
|
+ auto [lt, eq, gt] = cdpf.compare(tio, yield, key - cnode.key, tio.aes_ops());
|
|
|
+
|
|
|
+ // Depending on [lteq, gt] select the next ptr/index as
|
|
|
+ // upper 32 bits of cnode.pointers if lteq
|
|
|
+ // lower 32 bits of cnode.pointers if gt
|
|
|
+ RegXS left = extractLeftPtr(cnode.pointers);
|
|
|
+ RegXS right = extractRightPtr(cnode.pointers);
|
|
|
+
|
|
|
+ RegXS next_ptr;
|
|
|
+ mpc_select(tio, yield, next_ptr, gt, left, right, 32);
|
|
|
+
|
|
|
+ RegBS F_found;
|
|
|
+ // If we haven't found the key yet, and the lookup matches the current node key,
|
|
|
+ // then we found the node to return
|
|
|
+ mpc_and(tio, yield, F_found, isNotDummy, eq);
|
|
|
+ mpc_select(tio, yield, ret_node->key, eq, ret_node->key, cnode.key);
|
|
|
+ mpc_select(tio, yield, ret_node->value, eq, ret_node->value, cnode.value);
|
|
|
+
|
|
|
+ isDummy^=F_found;
|
|
|
+ bool found = lookup(tio, yield, next_ptr, key, A, TTL-1, isDummy, ret_node);
|
|
|
+
|
|
|
+ return found;
|
|
|
+}
|
|
|
+
|
|
|
+bool AVL::lookup(MPCTIO &tio, yield_t &yield, RegAS key, Node *ret_node) {
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+
|
|
|
+ RegBS isDummy;
|
|
|
+
|
|
|
+ bool found = lookup(tio, yield, root, key, A, num_items, isDummy, ret_node);
|
|
|
+ return found;
|
|
|
+}
|
|
|
+*/
|
|
|
+
|
|
|
+
|
|
|
+std::tuple<bool, RegBS> AVL::del(MPCTIO &tio, yield_t &yield, RegXS ptr, RegAS del_key,
|
|
|
+ Duoram<Node>::Flat &A, RegBS af, RegBS fs, int TTL,
|
|
|
+ avl_del_return &ret_struct) {
|
|
|
+ bool player0 = tio.player()==0;
|
|
|
+ if(TTL==0) {
|
|
|
+ //Reconstruct and return af
|
|
|
+ bool success = reconstruct_RegBS(tio, yield, af);
|
|
|
+ RegBS zero;
|
|
|
+ //printf("Reconstructed flag = %d\n", success);
|
|
|
+ if(player0)
|
|
|
+ ret_struct.F_r^=1;
|
|
|
+ return {success, zero};
|
|
|
+ } else {
|
|
|
+ Node node = A[ptr];
|
|
|
+ // Compare key
|
|
|
+
|
|
|
+ CDPF cdpf = tio.cdpf(yield);
|
|
|
+ auto [lt, eq, gt] = cdpf.compare(tio, yield, del_key - node.key, tio.aes_ops());
|
|
|
+
|
|
|
+ // c is the direction bit for next_ptr
|
|
|
+ // (c=0: go left or c=1: go right)
|
|
|
+ RegBS c = gt;
|
|
|
+ // lf = local found. We found the key to delete in this level.
|
|
|
+ RegBS lf = eq;
|
|
|
+
|
|
|
+ // Select the next ptr
|
|
|
+ RegXS left = getAVLLeftPtr(node.pointers);
|
|
|
+ RegXS right = getAVLRightPtr(node.pointers);
|
|
|
+
|
|
|
+ size_t &aes_ops = tio.aes_ops();
|
|
|
+ // Check if left and right children are 0, and compute F_0, F_1, F_2
|
|
|
+ RegBS l0 = cdpf.is_zero(tio, yield, left, aes_ops);
|
|
|
+ RegBS r0 = cdpf.is_zero(tio, yield, right, aes_ops);
|
|
|
+ RegBS F_0, F_1, F_2;
|
|
|
+ // F_0 = l0 & r0
|
|
|
+ mpc_and(tio, yield, F_0, l0, r0);
|
|
|
+ // F_1 = l0 \xor r0
|
|
|
+ F_1 = l0 ^ r0;
|
|
|
+ // F_2 = !(F_0 + F_1) (Only 1 of F_0, F_1, and F_2 can be true)
|
|
|
+ F_2 = F_0 ^ F_1;
|
|
|
+ if(player0)
|
|
|
+ F_2^=1;
|
|
|
+
|
|
|
+ // We set next ptr based on c, but we need to handle three
|
|
|
+ // edge cases where we do not pick next_ptr by just the comparison result
|
|
|
+ RegXS next_ptr, cs_ptr;
|
|
|
+ RegBS c_prime;
|
|
|
+ // Case 1: found the node here (lf), and node has only one child.
|
|
|
+ // Then we iterate down the only child.
|
|
|
+ RegBS F_c1, F_c2, F_c3, F_c4;
|
|
|
+ // Case 1: lf & F_1
|
|
|
+ mpc_and(tio, yield, F_c1, lf, F_1);
|
|
|
+ // Set c_prime for Case 1
|
|
|
+ mpc_select(tio, yield, c_prime, F_c1, c, l0);
|
|
|
+
|
|
|
+ // s1: shares of 1 bit, s0: shares of 0 bit
|
|
|
+ RegBS s1, s0;
|
|
|
+ s1.set(tio.player()==1);
|
|
|
+
|
|
|
+ // Case 2: found the node here (lf) and node has both children (F_2)
|
|
|
+ // In find successor case, so we find inorder successor for node to be deleted
|
|
|
+ // (inorder successor = go right and then find leftmost child.)
|
|
|
+ mpc_and(tio, yield, F_c2, lf, F_2);
|
|
|
+ mpc_select(tio, yield, c_prime, F_c2, c_prime, s1);
|
|
|
+
|
|
|
+ /*
|
|
|
+ // Reconstruct and Debug Block 2
|
|
|
+ bool F_c2_rec, s1_rec;
|
|
|
+ F_c2_rec = reconstruct_RegBS(tio, yield, F_c2);
|
|
|
+ s1_rec = reconstruct_RegBS(tio, yield, s1);
|
|
|
+ c_prime_rec = reconstruct_RegBS(tio, yield, c_prime);
|
|
|
+ printf("c_prime = %d, F_c2 = %d, s1 = %d\n", c_prime_rec, F_c2_rec, s1_rec);
|
|
|
+ */
|
|
|
+
|
|
|
+ // Case 3: finding successor (fs) and node has both children (F_2)
|
|
|
+ // Go left.
|
|
|
+ mpc_and(tio, yield, F_c3, fs, F_2);
|
|
|
+ mpc_select(tio, yield, c_prime, F_c3, c_prime, s0);
|
|
|
+
|
|
|
+ // Case 4: finding successor (fs) and node has no more left children (l0)
|
|
|
+ // This is the successor node then.
|
|
|
+ // Go right (since no more left)
|
|
|
+ mpc_and(tio, yield, F_c4, fs, l0);
|
|
|
+ mpc_select(tio, yield, c_prime, F_c4, c_prime, l0);
|
|
|
+
|
|
|
+ // Set next_ptr
|
|
|
+ mpc_select(tio, yield, next_ptr, c_prime, left, right, AVL_PTR_SIZE);
|
|
|
+ // cs_ptr: child's sibling pointer
|
|
|
+ mpc_select(tio, yield, cs_ptr, c_prime, right, left, AVL_PTR_SIZE);
|
|
|
+
|
|
|
+ RegBS af_prime, fs_prime;
|
|
|
+ mpc_or(tio, yield, af_prime, af, lf);
|
|
|
+
|
|
|
+ // If in Case 2, set fs. We are now finding successor
|
|
|
+ mpc_or(tio, yield, fs_prime, fs, F_c2);
|
|
|
+
|
|
|
+ // If in Case 4. Successor found here already. Toggle fs off
|
|
|
+ fs_prime=fs_prime^F_c4;
|
|
|
+
|
|
|
+ TTL-=1;
|
|
|
+ auto [key_found, bal_upd] = del(tio, yield, next_ptr, del_key, A, af_prime, fs_prime, TTL, ret_struct);
|
|
|
+
|
|
|
+ // If we didn't find the key, we can end here.
|
|
|
+ if(!key_found) {
|
|
|
+ return {0, s0};
|
|
|
+ }
|
|
|
+ /* F_rs: Flag for updating the correct child pointer of this node
|
|
|
+ This happens if F_r is set in ret_struct. F_r indicates if we need
|
|
|
+ to update a child pointer at this level by skipping the current
|
|
|
+ child in the direction of traversal. We do this in two cases:
|
|
|
+ i) F_d & (!F_2) : If we delete here, and this node does not have
|
|
|
+ 2 children (;i.e., we are not in the finding successor case)
|
|
|
+ ii) F_ns: Found the successor (no more left children while
|
|
|
+ traversing to find successor)
|
|
|
+ In cases i and ii we skip the next node, and make the current node
|
|
|
+ point to the node after the next node.
|
|
|
+
|
|
|
+ iii) We did rotation(s) at the lower level, changing the child in
|
|
|
+ that position. So we update it to the correct node in that
|
|
|
+ position now.
|
|
|
+ Whether skip happens or just update happens is handled by how
|
|
|
+ ret_struct.ret_ptr is set.
|
|
|
+ */
|
|
|
+
|
|
|
+ RegBS F_rr; // Flag to resolve F_r by updating correct child ptr
|
|
|
+ mpc_and(tio, yield, F_rr, c_prime, ret_struct.F_r);
|
|
|
+ mpc_select(tio, yield, right, F_rr, right, ret_struct.ret_ptr);
|
|
|
+ if(player0)
|
|
|
+ c_prime^=1;
|
|
|
+ mpc_and(tio, yield, F_rr, c_prime, ret_struct.F_r);
|
|
|
+ mpc_select(tio, yield, left, F_rr, left, ret_struct.ret_ptr);
|
|
|
+ if(player0)
|
|
|
+ c_prime^=1;
|
|
|
+
|
|
|
+ setAVLLeftPtr(node.pointers, left);
|
|
|
+ setAVLRightPtr(node.pointers, right);
|
|
|
+ // Delay storing pointers back until balance updates are done as well.
|
|
|
+ // Since we resolved the F_r flag returned, we set it back to 0.
|
|
|
+ ret_struct.F_r = s0;
|
|
|
+
|
|
|
+ RegBS p_bal_l, p_bal_r;
|
|
|
+ p_bal_l = getLeftBal(node.pointers);
|
|
|
+ p_bal_r = getRightBal(node.pointers);
|
|
|
+ auto [new_p_bal_l, new_p_bal_r, new_bal_upd, imb] =
|
|
|
+ updateBalanceDel(tio, yield, p_bal_l, p_bal_r, bal_upd, c_prime);
|
|
|
+ /*
|
|
|
+ // Reconstruct and Debug Block
|
|
|
+ bool rec_new_bal_upd, rec_imb, rec_bal_upd;
|
|
|
+ size_t rec_ckey;
|
|
|
+ rec_new_bal_upd = reconstruct_RegBS(tio, yield, new_bal_upd);
|
|
|
+ rec_imb = reconstruct_RegBS(tio, yield, imb);
|
|
|
+ rec_bal_upd = reconstruct_RegBS(tio, yield, bal_upd);
|
|
|
+ rec_ckey = reconstruct_RegAS(tio, yield, node.key);
|
|
|
+ bool rec_F_c1, rec_F_c2, rec_F_c3, rec_F_c4;
|
|
|
+ rec_F_c1 = reconstruct_RegBS(tio, yield, F_c1);
|
|
|
+ rec_F_c2 = reconstruct_RegBS(tio, yield, F_c2);
|
|
|
+ rec_F_c3 = reconstruct_RegBS(tio, yield, F_c3);
|
|
|
+ rec_F_c4 = reconstruct_RegBS(tio, yield, F_c4);
|
|
|
+ printf("Current Key = %lu\n", rec_ckey);
|
|
|
+ printf("F_c1 = %d, F_c2 = %d, F_c3 = %d, F_c4 = %d\n", rec_F_c1, rec_F_c2, rec_F_c3, rec_F_c4);
|
|
|
+ printf("bal_upd = %d, new_bal_upd = %d, imb= %d\n", rec_bal_upd, rec_new_bal_upd, rec_imb);
|
|
|
+ */
|
|
|
+
|
|
|
+ // F_ri: subflag for F_r. F_ri = returned flag set to 1 from imbalance fix.
|
|
|
+ RegBS F_ri;
|
|
|
+ // Perform rotations if imbalance (else dummy rotations)
|
|
|
+ /*
|
|
|
+ For capturing both the symmetric L and R cases of rotations, we'll capture directions with
|
|
|
+ dpc = dir_pc = direction from parent to child, and
|
|
|
+ ndpc = not(dir_pc)
|
|
|
+ When we travelled down the stack, we went from p->c. But in deletions to handle any imbalance
|
|
|
+ we look at c's sibling cs (child's sibling). And the rotation is between p and cs if there
|
|
|
+ was an imbalance at p, and perhaps even cs and it's child (the child in dir_pc, as that's the
|
|
|
+ only case that results in a double rotation when deleting).
|
|
|
+
|
|
|
+ In case of an imbalance we have to always rotate p->cs link. (L or R case)
|
|
|
+ If cs.bal_(dir_pc), then we have a double rotation (LR or RL) case.
|
|
|
+ In such cases, first rotate cs->gcs link, and then p->cs link. gcs = grandchild on cs path
|
|
|
+
|
|
|
+ Layout: In the R (or LR) case:
|
|
|
+
|
|
|
+ p
|
|
|
+ / \
|
|
|
+ cs c
|
|
|
+ / \
|
|
|
+ a gcs
|
|
|
+ / \
|
|
|
+ x y
|
|
|
+
|
|
|
+ - One of x or y must exist for it to be an LR case,
|
|
|
+ since then cs.bal_(dir_pc) = cs.bal_r = 1
|
|
|
+
|
|
|
+ Layout: In the L (or RL) case:
|
|
|
+
|
|
|
+ p
|
|
|
+ / \
|
|
|
+ c cs
|
|
|
+ / \
|
|
|
+ gcs a
|
|
|
+ / \
|
|
|
+ x y
|
|
|
+
|
|
|
+ - One of x or y must exist for it to be an RL case,
|
|
|
+ since then cs.bal_(dir_pc) = cs.bal_l = 1
|
|
|
+
|
|
|
+ (Note: if double rotation case, in the second rotation cs is actually gcs,
|
|
|
+ since the the first rotation swaps their positions)
|
|
|
+ */
|
|
|
+
|
|
|
+ Node cs_node = A[cs_ptr];
|
|
|
+ //dirpc = dir_pc = dpc = c_prime
|
|
|
+ RegBS cs_bal_l, cs_bal_r, cs_bal_dpc, cs_bal_ndpc, F_dr, not_c_prime;
|
|
|
+ RegXS gcs_ptr, cs_left, cs_right, cs_dpc, cs_ndpc, null;
|
|
|
+ // child's sibling node's balances in dir_pc (dpc), and not_dir_pc (ndpc)
|
|
|
+ cs_bal_l = getLeftBal(cs_node.pointers);
|
|
|
+ cs_bal_r = getRightBal(cs_node.pointers);
|
|
|
+ cs_left = getAVLLeftPtr(cs_node.pointers);
|
|
|
+ cs_right = getAVLRightPtr(cs_node.pointers);
|
|
|
+ mpc_select(tio, yield, cs_bal_dpc, c_prime, cs_bal_l, cs_bal_r);
|
|
|
+ mpc_select(tio, yield, cs_bal_ndpc, c_prime, cs_bal_r, cs_bal_l);
|
|
|
+ mpc_select(tio, yield, cs_dpc, c_prime, cs_left, cs_right);
|
|
|
+ mpc_select(tio, yield, cs_ndpc, c_prime, cs_right, cs_left);
|
|
|
+
|
|
|
+ // We need to double rotate (LR or RL case) if cs_bal_dpc is 1
|
|
|
+ F_dr = cs_bal_dpc;
|
|
|
+ mpc_select(tio, yield, gcs_ptr, cs_bal_dpc, cs_ndpc, cs_dpc, AVL_PTR_SIZE);
|
|
|
+ Node gcs_node = A[gcs_ptr];
|
|
|
+
|
|
|
+ not_c_prime = c_prime;
|
|
|
+ if(player0) {
|
|
|
+ not_c_prime^=1;
|
|
|
+ }
|
|
|
+ // First rotation: cs->gcs link
|
|
|
+ rotate(tio, yield, node.pointers, cs_ptr, cs_node.pointers, gcs_ptr,
|
|
|
+ gcs_node.pointers, not_c_prime, c_prime, F_dr, s0);
|
|
|
+
|
|
|
+ // If F_dr, we did first rotation. Then cs and gcs need to swap before the second rotate.
|
|
|
+ RegXS new_cs_pointers, new_cs, new_ptr;
|
|
|
+ mpc_select(tio, yield, new_cs_pointers, F_dr, cs_node.pointers, gcs_node.pointers);
|
|
|
+ mpc_select(tio, yield, new_cs, F_dr, cs_ptr, gcs_ptr, AVL_PTR_SIZE);
|
|
|
+
|
|
|
+ // Second rotation: p->cs link
|
|
|
+ // Since we don't have access to gp node here we just send a null and s0
|
|
|
+ // for gp_pointers and dir_gpp. Instead this pointer fix is handled by F_r
|
|
|
+ // and ret_struct.ret_ptr.
|
|
|
+ rotate(tio, yield, null, ptr, node.pointers, new_cs,
|
|
|
+ new_cs_pointers, s0, not_c_prime, imb, s1);
|
|
|
+
|
|
|
+ // If imb (we do some rotation), then update F_r, and ret_ptr, to
|
|
|
+ // fix the gp->p link (The F_r clauses later, and this are mutually
|
|
|
+ // exclusive events. They will never trigger together.)
|
|
|
+ mpc_select(tio, yield, new_ptr, F_dr, cs_ptr, gcs_ptr);
|
|
|
+ mpc_select(tio, yield, F_ri, imb, s0, s1);
|
|
|
+ mpc_select(tio, yield, ret_struct.ret_ptr, imb, ret_struct.ret_ptr, new_ptr);
|
|
|
+
|
|
|
+ // Write back new_cs_pointers correctly to (cs_node/gcs_node).pointers
|
|
|
+ // and then balance the nodes
|
|
|
+ mpc_select(tio, yield, cs_node.pointers, F_dr, new_cs_pointers, cs_node.pointers);
|
|
|
+ mpc_select(tio, yield, gcs_node.pointers, F_dr, gcs_node.pointers, new_cs_pointers);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Update balances based on imbalance and type of rotations that happen.
|
|
|
+ In the case of an imbalance, updateBalance() sets bal_l and bal_r of p to 0.
|
|
|
+
|
|
|
+ */
|
|
|
+ RegBS IC1, IC2, IC3; // Imbalance Case 1, 2 or 3
|
|
|
+ // IC1 = Single rotation (L/R). L/R = dpc
|
|
|
+ mpc_and(tio, yield, IC1, imb, cs_bal_ndpc);
|
|
|
+ // IC3 = Double rotation (LR/RL). 1st rotate direction = ndpc, 2nd direction = dpc
|
|
|
+ mpc_and(tio, yield, IC3, imb, cs_bal_dpc);
|
|
|
+ // IC2 = Single rotation (L/R).
|
|
|
+ IC2 = IC1 ^ IC3;
|
|
|
+ if(player0) {
|
|
|
+ IC2^=1;
|
|
|
+ }
|
|
|
+ mpc_and(tio, yield, IC2, imb, IC2);
|
|
|
+
|
|
|
+ /*
|
|
|
+ bool rec_IC1, rec_IC2, rec_IC3;
|
|
|
+ rec_IC1 = reconstruct_RegBS(tio, yield, IC1);
|
|
|
+ rec_IC2 = reconstruct_RegBS(tio, yield, IC2);
|
|
|
+ rec_IC3 = reconstruct_RegBS(tio, yield, IC3);
|
|
|
+ printf("rec_IC1 = %d, rec_IC2 = %d, rec_IC3 = %d\n", rec_IC1, rec_IC2, rec_IC3);
|
|
|
+ */
|
|
|
+
|
|
|
+ // IC1, IC2, IC3: CS.bal = 0 0
|
|
|
+ mpc_select(tio, yield, cs_bal_dpc, imb, cs_bal_dpc, s0);
|
|
|
+ mpc_select(tio, yield, cs_bal_ndpc, imb, cs_bal_ndpc, s0);
|
|
|
+ mpc_select(tio, yield, cs_bal_r, c_prime, cs_bal_ndpc, cs_bal_dpc);
|
|
|
+ mpc_select(tio, yield, cs_bal_l, c_prime, cs_bal_dpc, cs_bal_ndpc);
|
|
|
+
|
|
|
+ // IC2: p.bal_ndpc = 1, cs.bal_dpc = 1
|
|
|
+ // (IC2 & not_c_prime)
|
|
|
+ cs_bal_dpc^=IC2;
|
|
|
+ RegBS p_bal_dpc, p_bal_ndpc;
|
|
|
+ mpc_select(tio, yield, p_bal_ndpc, c_prime, new_p_bal_r, new_p_bal_l);
|
|
|
+ p_bal_ndpc^=IC2;
|
|
|
+ RegBS IC2_ndpc_l, IC2_ndpc_r, IC2_dpc_l, IC2_dpc_r;
|
|
|
+ mpc_and(tio, yield, IC2_ndpc_l, IC2, c_prime);
|
|
|
+ mpc_and(tio, yield, IC2_ndpc_r, IC2, not_c_prime);
|
|
|
+ mpc_and(tio, yield, IC2_dpc_l, IC2, not_c_prime);
|
|
|
+ mpc_and(tio, yield, IC2_dpc_r, IC2, c_prime);
|
|
|
+
|
|
|
+ mpc_select(tio, yield, new_p_bal_l, IC2_ndpc_l, new_p_bal_l, p_bal_ndpc);
|
|
|
+ mpc_select(tio, yield, new_p_bal_r, IC2_ndpc_r, new_p_bal_r, p_bal_ndpc);
|
|
|
+ mpc_select(tio, yield, cs_bal_l, IC2_dpc_l, cs_bal_l, cs_bal_dpc);
|
|
|
+ mpc_select(tio, yield, cs_bal_r, IC2_dpc_r, cs_bal_r, cs_bal_dpc);
|
|
|
+ // In the IC2 case bal_upd = 0 (The rotation doesn't end up
|
|
|
+ // decreasing height of this subtree.
|
|
|
+ mpc_select(tio, yield, bal_upd, IC2, bal_upd, s0);
|
|
|
+
|
|
|
+ // IC3:
|
|
|
+ // To set balance in this case we need to know if gcs.dpc child exists
|
|
|
+ // and similarly if gcs.ndpc child exitst.
|
|
|
+ // if(gcs.ndpc child exists): cs.bal_ndpc = 1
|
|
|
+ // if(gcs.dpc child exists): p.bal_dpc = 1
|
|
|
+ RegBS gcs_dpc_exists, gcs_ndpc_exists;
|
|
|
+ RegXS gcs_l = getAVLLeftPtr(gcs_node.pointers);
|
|
|
+ RegXS gcs_r = getAVLRightPtr(gcs_node.pointers);
|
|
|
+ RegBS gcs_bal_l = getLeftBal(gcs_node.pointers);
|
|
|
+ RegBS gcs_bal_r = getRightBal(gcs_node.pointers);
|
|
|
+ RegXS gcs_dpc, gcs_ndpc;
|
|
|
+ mpc_select(tio, yield, gcs_dpc, c_prime, gcs_l, gcs_r);
|
|
|
+ mpc_select(tio, yield, gcs_ndpc, not_c_prime, gcs_l, gcs_r);
|
|
|
+ gcs_dpc_exists = cdpf.is_zero(tio, yield, gcs_dpc, aes_ops);
|
|
|
+ gcs_ndpc_exists = cdpf.is_zero(tio, yield, gcs_ndpc, aes_ops);
|
|
|
+ cs_bal_ndpc^=IC3;
|
|
|
+ RegBS IC3_ndpc_l, IC3_ndpc_r, IC3_dpc_l, IC3_dpc_r;
|
|
|
+ mpc_and(tio, yield, IC3_ndpc_l, IC3, c_prime);
|
|
|
+ mpc_and(tio, yield, IC3_ndpc_r, IC3, not_c_prime);
|
|
|
+ mpc_and(tio, yield, IC3_dpc_l, IC3, not_c_prime);
|
|
|
+ mpc_and(tio, yield, IC3_dpc_r, IC3, c_prime);
|
|
|
+ RegBS f0, f1, f2, f3;
|
|
|
+ mpc_and(tio, yield, f0, IC3_dpc_l, gcs_dpc_exists);
|
|
|
+ mpc_and(tio, yield, f1, IC3_dpc_r, gcs_dpc_exists);
|
|
|
+ mpc_and(tio, yield, f2, IC3_ndpc_l, gcs_ndpc_exists);
|
|
|
+ mpc_and(tio, yield, f3, IC3_ndpc_r, gcs_ndpc_exists);
|
|
|
+
|
|
|
+ mpc_select(tio, yield, new_p_bal_l, f0, new_p_bal_l, IC3);
|
|
|
+ mpc_select(tio, yield, new_p_bal_r, f1, new_p_bal_r, IC3);
|
|
|
+ mpc_select(tio, yield, cs_bal_l, f2, cs_bal_l, IC3);
|
|
|
+ mpc_select(tio, yield, cs_bal_r, f3, cs_bal_r, IC3);
|
|
|
+ // In IC3 gcs.bal = 0 0
|
|
|
+ mpc_select(tio, yield, gcs_bal_l, IC3, gcs_bal_l, s0);
|
|
|
+ mpc_select(tio, yield, gcs_bal_r, IC3, gcs_bal_r, s0);
|
|
|
+
|
|
|
+ // Write back <cs_bal_dpc, cs_bal_ndpc> and <gcs_bal_l, gcs_bal_r>
|
|
|
+ setLeftBal(gcs_node.pointers, gcs_bal_l);
|
|
|
+ setRightBal(gcs_node.pointers, gcs_bal_r);
|
|
|
+ setLeftBal(cs_node.pointers, cs_bal_l);
|
|
|
+ setRightBal(cs_node.pointers, cs_bal_r);
|
|
|
+
|
|
|
+ A[cs_ptr].NODE_POINTERS = cs_node.pointers;
|
|
|
+ A[gcs_ptr].NODE_POINTERS = gcs_node.pointers;
|
|
|
+
|
|
|
+ // Write back updated pointers correctly accounting for rotations
|
|
|
+ setLeftBal(node.pointers, new_p_bal_l);
|
|
|
+ setRightBal(node.pointers, new_p_bal_r);
|
|
|
+ A[ptr].NODE_POINTERS = node.pointers;
|
|
|
+
|
|
|
+ // Update the return structure
|
|
|
+ // F_dh = Delete Here flag,
|
|
|
+ // F_sf = successor found (no more left children while trying to find successor)
|
|
|
+ // F_rs = subflag for F_r. F_rs = flag for F_r set to 1 from handling a skip fix
|
|
|
+ // (deleting a node with single child, or found successor cases)
|
|
|
+ RegBS F_dh, F_sf, F_rs;
|
|
|
+ mpc_or(tio, yield, ret_struct.F_ss, ret_struct.F_ss, F_c2);
|
|
|
+ if(player0)
|
|
|
+ af^=1;
|
|
|
+ mpc_and(tio, yield, F_dh, lf, af);
|
|
|
+ mpc_select(tio, yield, ret_struct.N_d, F_dh, ret_struct.N_d, ptr);
|
|
|
+ // F_sf = Successor found = F_c4 = Finding successor & no more left child
|
|
|
+ F_sf = F_c4;
|
|
|
+ if(player0)
|
|
|
+ F_2^=1;
|
|
|
+ // If we have to i) delete here, and it doesn't have two children
|
|
|
+ // we have to update child pointer in parent with the returned pointer
|
|
|
+ mpc_and(tio, yield, F_rs, F_dh, F_2);
|
|
|
+ // ii) if we found successor here
|
|
|
+ mpc_or(tio, yield, F_rs, F_rs, F_sf);
|
|
|
+ mpc_select(tio, yield, ret_struct.N_s, F_sf, ret_struct.N_s, ptr);
|
|
|
+ // F_rs and F_ri will never trigger together. So the line below
|
|
|
+ // set ret_ptr to the correct pointer to handle either case
|
|
|
+ // If neither F_rs nor F_ri, we set the ret_ptr to current ptr.
|
|
|
+ RegBS F_nr;
|
|
|
+ mpc_or(tio, yield, F_nr, F_rs, F_ri);
|
|
|
+ // F_nr = F_rs || F_ri
|
|
|
+ ret_struct.F_r = F_nr;
|
|
|
+
|
|
|
+ /*
|
|
|
+ bool rec_ret_F_r, rec_F_rs, rec_F_ri;
|
|
|
+ rec_ret_F_r = reconstruct_RegBS(tio, yield, ret_struct.F_r);
|
|
|
+ rec_F_rs = reconstruct_RegBS(tio, yield, F_rs);
|
|
|
+ rec_F_ri = reconstruct_RegBS(tio, yield, F_ri);
|
|
|
+ printf("rec_ret_F_r = %d, rec_F_rs = %d, rec_F_ri = %d\n", rec_ret_F_r, rec_F_rs, rec_F_ri);
|
|
|
+ */
|
|
|
+
|
|
|
+ if(player0) {
|
|
|
+ F_nr^=1;
|
|
|
+ }
|
|
|
+ // F_nr = !(F_rs || F_ri)
|
|
|
+ mpc_select(tio, yield, ret_struct.ret_ptr, F_nr, ret_struct.ret_ptr, ptr);
|
|
|
+
|
|
|
+ // If F_rs, we skipped a node, so update bal_upd to 1
|
|
|
+ mpc_select(tio, yield, bal_upd, F_rs, bal_upd, s1);
|
|
|
+
|
|
|
+ /*
|
|
|
+ rec_F_rs = reconstruct_RegBS(tio, yield, F_rs);
|
|
|
+ bool rec_bal_upd_set = reconstruct_RegBS(tio, yield, bal_upd);
|
|
|
+ printf("after bal_upd select from rec_F_rs = %d, rec_bal_upd = %d\n",
|
|
|
+ rec_F_rs, rec_bal_upd_set);
|
|
|
+ */
|
|
|
+
|
|
|
+ // Swap deletion node with successor node done outside of recursive traversal.
|
|
|
+ return {key_found, bal_upd};
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+bool AVL::del(MPCTIO &tio, yield_t &yield, RegAS del_key) {
|
|
|
+ if(num_items==0)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ if(num_items==1) {
|
|
|
+ //Delete root
|
|
|
+ Node zero;
|
|
|
+ empty_locations.emplace_back(root);
|
|
|
+ A[root] = zero;
|
|
|
+ num_items--;
|
|
|
+ return 1;
|
|
|
+ } else {
|
|
|
+ int TTL = AVL_TTL(num_items);
|
|
|
+ // Flags for already found (af) item to delete and find successor (fs)
|
|
|
+ // if this deletion requires a successor swap
|
|
|
+ RegBS af, fs;
|
|
|
+ avl_del_return ret_struct;
|
|
|
+ auto [success, bal_upd] = del(tio, yield, root, del_key, A, af, fs, TTL, ret_struct);
|
|
|
+ printf ("Success = %d\n", success);
|
|
|
+ if(!success){
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ else{
|
|
|
+ num_items--;
|
|
|
+
|
|
|
+ /*
|
|
|
+ printf("In delete's swap portion\n");
|
|
|
+ Node del_node = A.reconstruct(A[ret_struct.N_d]);
|
|
|
+ Node suc_node = A.reconstruct(A[ret_struct.N_s]);
|
|
|
+ printf("del_node key = %ld, suc_node key = %ld\n",
|
|
|
+ del_node.key.ashare, suc_node.key.ashare);
|
|
|
+ printf("flag_s = %d\n", ret_struct.F_ss.bshare);
|
|
|
+ */
|
|
|
+ Node del_node = A[ret_struct.N_d];
|
|
|
+ Node suc_node = A[ret_struct.N_s];
|
|
|
+ RegAS zero_as; RegXS zero_xs;
|
|
|
+ // Update root if needed
|
|
|
+ mpc_select(tio, yield, root, ret_struct.F_r, root, ret_struct.ret_ptr);
|
|
|
+
|
|
|
+ /*
|
|
|
+ bool rec_F_ss = reconstruct_RegBS(tio, yield, ret_struct.F_ss);
|
|
|
+ size_t rec_del_key = reconstruct_RegAS(tio, yield, del_node.key);
|
|
|
+ size_t rec_suc_key = reconstruct_RegAS(tio, yield, suc_node.key);
|
|
|
+ printf("rec_F_ss = %d, del_node.key = %lu, suc_nod.key = %lu\n",
|
|
|
+ rec_F_ss, rec_del_key, rec_suc_key);
|
|
|
+ */
|
|
|
+ mpc_select(tio, yield, del_node.key, ret_struct.F_ss, del_node.key, suc_node.key);
|
|
|
+ mpc_select(tio, yield, del_node.value, ret_struct.F_ss, del_node.value, suc_node.value);
|
|
|
+ A[ret_struct.N_d].NODE_KEY = del_node.key;
|
|
|
+ A[ret_struct.N_d].NODE_VALUE = del_node.value;
|
|
|
+ A[ret_struct.N_s].NODE_KEY = zero_as;
|
|
|
+ A[ret_struct.N_s].NODE_VALUE = zero_xs;
|
|
|
+
|
|
|
+ RegXS empty_loc;
|
|
|
+ mpc_select(tio, yield, empty_loc, ret_struct.F_ss, ret_struct.N_d, ret_struct.N_s);
|
|
|
+ //Add deleted (empty) location into the empty_locations vector for reuse in next insert()
|
|
|
+ empty_locations.emplace_back(empty_loc);
|
|
|
+ }
|
|
|
+
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+// Now we use the AVL class in various ways. This function is called by
|
|
|
+// online.cpp.
|
|
|
+void avl(MPCIO &mpcio,
|
|
|
+ const PRACOptions &opts, char **args)
|
|
|
+{
|
|
|
+ nbits_t depth=4;
|
|
|
+
|
|
|
+ if (*args) {
|
|
|
+ depth = atoi(*args);
|
|
|
+ ++args;
|
|
|
+ }
|
|
|
+ size_t items = (size_t(1)<<depth)-1;
|
|
|
+ if (*args) {
|
|
|
+ items = atoi(*args);
|
|
|
+ ++args;
|
|
|
+ }
|
|
|
+
|
|
|
+ MPCTIO tio(mpcio, 0, opts.num_threads);
|
|
|
+ run_coroutines(tio, [&tio, depth, items] (yield_t &yield) {
|
|
|
+ size_t size = size_t(1)<<depth;
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+
|
|
|
+ // Insert a few elements
|
|
|
+ int insert_array[] = {10, 10, 13, 11, 14, 8, 15, 20, 17, 19, 7, 12};
|
|
|
+ size_t insert_array_size = 11;
|
|
|
+ //int insert_array[] = {10, 10, 13, 11, 14, 8, 15, 20, 17, 19, 7, 12};
|
|
|
+ //size_t insert_array_size = 11;
|
|
|
+ //int insert_array[] = {6, 3, 10, 1, 2};
|
|
|
+ //size_t insert_array_size = 4;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ printf("Insert %d\n", insert_array[i]);
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.print_oram(tio, yield);
|
|
|
+ tree.pretty_print(tio, yield);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(10 * tio.player());
|
|
|
+ printf("Delete 10\n");
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.print_oram(tio, yield);
|
|
|
+ tree.pretty_print(tio, yield);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ del_key.set(14 * tio.player());
|
|
|
+ printf("Delete 14\n");
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.print_oram(tio, yield);
|
|
|
+ tree.pretty_print(tio, yield);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ del_key.set(12 * tio.player());
|
|
|
+ printf("Delete 12\n");
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.print_oram(tio, yield);
|
|
|
+ tree.pretty_print(tio, yield);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ });
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+void avl_tests(MPCIO &mpcio,
|
|
|
+ const PRACOptions &opts, char **args)
|
|
|
+{
|
|
|
+ // Not taking arguments for tests
|
|
|
+ nbits_t depth=4;
|
|
|
+ size_t items = (size_t(1)<<depth)-1;
|
|
|
+
|
|
|
+ MPCTIO tio(mpcio, 0, opts.num_threads);
|
|
|
+ run_coroutines(tio, [&tio, depth, items] (yield_t &yield) {
|
|
|
+ size_t size = size_t(1)<<depth;
|
|
|
+ bool player0 = tio.player()==0;
|
|
|
+
|
|
|
+ // (T1) : Test 1 : L rotation (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 5 7
|
|
|
+ \ / \
|
|
|
+ 7 ---> 5 9
|
|
|
+ \
|
|
|
+ 9
|
|
|
+
|
|
|
+ T1 checks:
|
|
|
+ - root is 7
|
|
|
+ - 5,7,9 in correct positions
|
|
|
+ - 5 and 9 have no children and 0 balances
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {5, 7, 9};
|
|
|
+ size_t insert_array_size = 2;
|
|
|
+ Node node;
|
|
|
+
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+
|
|
|
+ Node root_node, left_node, right_node;
|
|
|
+ size_t left_index, right_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ left_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ right_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ left_node = R[left_index];
|
|
|
+ right_node = R[right_index];
|
|
|
+
|
|
|
+ if(left_node.key.share()!=5 || right_node.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ //To check that left and right have no children and 0 balances
|
|
|
+ size_t sum = left_node.pointers.share() + right_node.pointers.share();
|
|
|
+ if(sum!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T1 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T1 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // (T2) : Test 2 : L rotation (root unmodified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+ 5 5
|
|
|
+ / \ / \
|
|
|
+ 3 7 3 9
|
|
|
+ \ ---> / \
|
|
|
+ 9 7 7 12
|
|
|
+ \
|
|
|
+ 12
|
|
|
+
|
|
|
+
|
|
|
+ T2 checks:
|
|
|
+ - root is 5
|
|
|
+ - 3, 7, 9, 12 in expected positions
|
|
|
+ - Nodes 3, 7, 12 have 0 balance and no children
|
|
|
+ - 5's bal = 0 1
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {5, 3, 7, 9, 12};
|
|
|
+ size_t insert_array_size = 4;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n3, n7, n9, n12;
|
|
|
+ size_t n3_index, n7_index, n9_index, n12_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n3_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n3 = R[n3_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+ n7_index = getAVLLeftPtr(n9.pointers).share();
|
|
|
+ n12_index = getAVLRightPtr(n9.pointers).share();
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n3.key.share()!=3 || n9.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n7.key.share()!=7 || n12.key.share()!=12) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node children and balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n3.pointers.share());
|
|
|
+ zero+=(n7.pointers.share());
|
|
|
+ zero+=(n12.pointers.share());
|
|
|
+ zero+=(getLeftBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getRightBal(root_node.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T2 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T2 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T3) : Test 3 : R rotation (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 9 7
|
|
|
+ / / \
|
|
|
+ 7 ---> 5 9
|
|
|
+ /
|
|
|
+ 5
|
|
|
+
|
|
|
+ T3 checks:
|
|
|
+ - root is 7
|
|
|
+ - 5,7,9 in correct positions
|
|
|
+ - 5 and 9 have no children
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 7, 5};
|
|
|
+ size_t insert_array_size = 2;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+
|
|
|
+ Node root_node, left_node, right_node;
|
|
|
+ size_t left_index, right_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ left_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ right_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ left_node = R[left_index];
|
|
|
+ right_node = R[right_index];
|
|
|
+
|
|
|
+ if(left_node.key.share()!=5 || right_node.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ //To check that left and right have no children and 0 balances
|
|
|
+ size_t sum = left_node.pointers.share() + right_node.pointers.share();
|
|
|
+ if(sum!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T3 : SUCCESS\n");
|
|
|
+ } else{
|
|
|
+ print_red("T3 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T4) : Test 4 : R rotation (root unmodified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+ 9 9
|
|
|
+ / \ / \
|
|
|
+ 7 12 5 12
|
|
|
+ / ---> / \
|
|
|
+ 5 7 3 7
|
|
|
+ /
|
|
|
+ 3
|
|
|
+
|
|
|
+
|
|
|
+ T4 checks:
|
|
|
+ - root is 9
|
|
|
+ - 3,5,7,12 are in correct positions
|
|
|
+ - Nodes 3,7,12 have 0 balance
|
|
|
+ - Nodes 3,7,12 have no children
|
|
|
+ - 9's bal = 1 0
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 12, 7, 5, 3};
|
|
|
+ size_t insert_array_size = 4;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n3, n7, n5, n12;
|
|
|
+ size_t n3_index, n7_index, n5_index, n12_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n5_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n12_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n5 = R[n5_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+ n3_index = getAVLLeftPtr(n5.pointers).share();
|
|
|
+ n7_index = getAVLRightPtr(n5.pointers).share();
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n3 = R[n3_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n12.key.share()!=12 || n5.key.share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n3.key.share()!=3 || n7.key.share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n3.pointers.share());
|
|
|
+ zero+=(n7.pointers.share());
|
|
|
+ zero+=(n12.pointers.share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n5.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getLeftBal(root_node.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T4 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T4 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T5) : Test 5 : LR rotation (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+ 9 9 7
|
|
|
+ / / / \
|
|
|
+ 5 --> 7 --> 5 9
|
|
|
+ \ /
|
|
|
+ 7 5
|
|
|
+
|
|
|
+
|
|
|
+ T5 checks:
|
|
|
+ - root is 7
|
|
|
+ - 9,5,7 are in correct positions
|
|
|
+ - Nodes 5,7,9 have 0 balance
|
|
|
+ - Nodes 5,9 have no children
|
|
|
+ */
|
|
|
+
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 5, 7};
|
|
|
+ size_t insert_array_size = 2;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n9, n5;
|
|
|
+ size_t n9_index, n5_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n5_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n5 = R[n5_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n9.key.share()!=9 || n5.key.share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n5.pointers.share());
|
|
|
+ zero+=(n9.pointers.share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n5.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T5 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T5 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T6) : Test 6 : LR rotation (root unmodified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 9 9 9
|
|
|
+ / \ / \ / \
|
|
|
+ 7 12 7 12 5 12
|
|
|
+ / ---> / ---> / \
|
|
|
+ 3 5 3 7
|
|
|
+ \ /
|
|
|
+ 5 3
|
|
|
+
|
|
|
+
|
|
|
+ T6 checks:
|
|
|
+ - root is 9
|
|
|
+ - 3,5,7,12 are in correct positions
|
|
|
+ - Nodes 3,7,12 have 0 balance
|
|
|
+ - Nodes 3,7,12 have no children
|
|
|
+ - 9's bal = 1 0
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 12, 7, 3, 5};
|
|
|
+ size_t insert_array_size = 4;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n3, n7, n5, n12;
|
|
|
+ size_t n3_index, n7_index, n5_index, n12_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n5_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n12_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n5 = R[n5_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+ n3_index = getAVLLeftPtr(n5.pointers).share();
|
|
|
+ n7_index = getAVLRightPtr(n5.pointers).share();
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n3 = R[n3_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n5.key.share()!=5 || n12.key.share()!=12) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n3.key.share()!=3 || n7.key.share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n3.pointers.share());
|
|
|
+ zero+=(n7.pointers.share());
|
|
|
+ zero+=(n12.pointers.share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n5.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getLeftBal(root_node.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T6 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T6 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T7) : Test 7 : RL rotation (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+ 5 5 7
|
|
|
+ \ \ / \
|
|
|
+ 9 --> 7 --> 5 9
|
|
|
+ / \
|
|
|
+ 7 9
|
|
|
+
|
|
|
+
|
|
|
+ T7 checks:
|
|
|
+ - root is 7
|
|
|
+ - 9,5,7 are in correct positions
|
|
|
+ - Nodes 5,7,9 have 0 balance
|
|
|
+ - Nodes 5,9 have no children
|
|
|
+ */
|
|
|
+
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {5, 9, 7};
|
|
|
+ size_t insert_array_size = 2;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n9, n5;
|
|
|
+ size_t n9_index, n5_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n5_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n5 = R[n5_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n9.key.share()!=9 || n5.key.share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n5.pointers.share());
|
|
|
+ zero+=(n9.pointers.share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n5.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T7 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T7 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // (T8) : Test 8 : RL rotation (root unmodified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 5 5 5
|
|
|
+ / \ / \ / \
|
|
|
+ 3 12 3 12 3 9
|
|
|
+ / ---> / ---> / \
|
|
|
+ 7 9 7 12
|
|
|
+ \ /
|
|
|
+ 9 7
|
|
|
+
|
|
|
+
|
|
|
+ T8 checks:
|
|
|
+ - root is 5
|
|
|
+ - 3,9,7,12 are in correct positions
|
|
|
+ - Nodes 3,7,12 have 0 balance
|
|
|
+ - Nodes 3,7,12 have no children
|
|
|
+ - 5's bal = 0 1
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {5, 3, 12, 7, 9};
|
|
|
+ size_t insert_array_size = 4;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n3, n7, n9, n12;
|
|
|
+ size_t n3_index, n7_index, n9_index, n12_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n3_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n3 = R[n3_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+ n7_index = getAVLLeftPtr(n9.pointers).share();
|
|
|
+ n12_index = getAVLRightPtr(n9.pointers).share();
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n3.key.share()!=3 || n9.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n7.key.share()!=7 || n12.key.share()!=12) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n3.pointers.share());
|
|
|
+ zero+=(n7.pointers.share());
|
|
|
+ zero+=(n12.pointers.share());
|
|
|
+ zero+=(getLeftBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getRightBal(root_node.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T8 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T8 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Deletion Tests:
|
|
|
+
|
|
|
+ // (T9) : Test 9 : L rotation (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 5 7
|
|
|
+ / \ Del 3 / \
|
|
|
+ 3 7 ------> 5 9
|
|
|
+ \
|
|
|
+ 9
|
|
|
+
|
|
|
+ T9 checks:
|
|
|
+ - root is 7
|
|
|
+ - 5,7,9 in correct positions
|
|
|
+ - 5 and 9 have no children and 0 balances
|
|
|
+ - 7 has 0 balances
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {5, 3, 7, 9};
|
|
|
+ size_t insert_array_size = 3;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(3 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+
|
|
|
+ Node root_node, left_node, right_node;
|
|
|
+ size_t left_index, right_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ left_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ right_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ left_node = R[left_index];
|
|
|
+ right_node = R[right_index];
|
|
|
+
|
|
|
+ if(left_node.key.share()!=5 || right_node.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ //To check that left and right have no children and 0 balances
|
|
|
+ size_t sum = left_node.pointers.share() + right_node.pointers.share();
|
|
|
+ if(sum!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T9 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T9 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // (T10) : Test 10 : L rotation (root unmodified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+ 5 5
|
|
|
+ / \ / \
|
|
|
+ 3 7 Del 6 3 9
|
|
|
+ / / \ ------> / / \
|
|
|
+ 1 6 9 1 7 12
|
|
|
+ \
|
|
|
+ 12
|
|
|
+
|
|
|
+
|
|
|
+ T10 checks:
|
|
|
+ - root is 5
|
|
|
+ - 3, 7, 9, 12 in expected positions
|
|
|
+ - Nodes 3, 7, 12 have 0 balance and no children
|
|
|
+ - 5's bal = 0 1
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {5, 3, 7, 9, 6, 1, 12};
|
|
|
+ size_t insert_array_size = 6;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(6 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n1, n3, n7, n9, n12;
|
|
|
+ size_t n1_index, n3_index, n7_index, n9_index, n12_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n3_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n3 = R[n3_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+ n7_index = getAVLLeftPtr(n9.pointers).share();
|
|
|
+ n12_index = getAVLRightPtr(n9.pointers).share();
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+ n1_index = getAVLLeftPtr(n3.pointers).share();
|
|
|
+ n1 = R[n1_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n3.key.share()!=3 || n9.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n7.key.share()!=7 || n12.key.share()!=12 || n1.key.share()!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node children and balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n1.pointers.share());
|
|
|
+ zero+=(n7.pointers.share());
|
|
|
+ zero+=(n12.pointers.share());
|
|
|
+ zero+=(getLeftBal(root_node.pointers).share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ zero+=(getRightBal(n3.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getLeftBal(n3.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T10 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T10 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // (T11) : Test 11 : R rotation (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 9 7
|
|
|
+ / \ Del 12 / \
|
|
|
+ 7 12 -------> 5 9
|
|
|
+ /
|
|
|
+ 5
|
|
|
+
|
|
|
+ T11 checks:
|
|
|
+ - root is 7
|
|
|
+ - 5,7,9 in correct positions and balances to 0
|
|
|
+ - 5 and 9 have no children
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 7, 12, 5};
|
|
|
+ size_t insert_array_size = 3;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(12 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+
|
|
|
+ Node root_node, left_node, right_node;
|
|
|
+ size_t left_index, right_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ left_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ right_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ left_node = R[left_index];
|
|
|
+ right_node = R[right_index];
|
|
|
+
|
|
|
+ if(left_node.key.share()!=5 || right_node.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ //To check that left and right have no children and 0 balances
|
|
|
+ size_t zero = left_node.pointers.share() + right_node.pointers.share();
|
|
|
+ zero+=(getLeftBal(left_node.pointers).share());
|
|
|
+ zero+=(getRightBal(left_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(right_node.pointers).share());
|
|
|
+ zero+=(getRightBal(right_node.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T11 : SUCCESS\n");
|
|
|
+ } else{
|
|
|
+ print_red("T11 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T12) : Test 12 : R rotation (root unmodified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+ 9 9
|
|
|
+ / \ / \
|
|
|
+ 7 12 Del 8 5 12
|
|
|
+ / \ \ ------> / \ \
|
|
|
+ 5 8 15 3 7 15
|
|
|
+ /
|
|
|
+ 3
|
|
|
+
|
|
|
+
|
|
|
+ T4 checks:
|
|
|
+ - root is 9
|
|
|
+ - 3,5,7,12,15 are in correct positions
|
|
|
+ - Nodes 3,7,15 have 0 balance
|
|
|
+ - Nodes 3,7,15 have no children
|
|
|
+ - 9,5 bal = 0 0
|
|
|
+ - 12 bal = 0 1
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 12, 7, 5, 8, 15, 3};
|
|
|
+ size_t insert_array_size = 6;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(8 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n3, n7, n5, n12, n15;
|
|
|
+ size_t n3_index, n7_index, n5_index, n12_index, n15_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n5_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n12_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n5 = R[n5_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+ n3_index = getAVLLeftPtr(n5.pointers).share();
|
|
|
+ n7_index = getAVLRightPtr(n5.pointers).share();
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n3 = R[n3_index];
|
|
|
+ n15_index = getAVLRightPtr(n12.pointers).share();
|
|
|
+ n15 = R[n15_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n12.key.share()!=12 || n5.key.share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n3.key.share()!=3 || n7.key.share()!=7 || n15.key.share()!=15) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n3.pointers.share());
|
|
|
+ zero+=(n7.pointers.share());
|
|
|
+ zero+=(n15.pointers.share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n5.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getRightBal(n12.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T12 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T12 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T13) : Test 13 : LR rotation (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+ 9 9 7
|
|
|
+ / \ Del 12 / / \
|
|
|
+ 5 12 -------> 7 --> 5 9
|
|
|
+ \ /
|
|
|
+ 7 5
|
|
|
+
|
|
|
+
|
|
|
+ T5 checks:
|
|
|
+ - root is 7
|
|
|
+ - 9,5,7 are in correct positions
|
|
|
+ - Nodes 5,7,9 have 0 balance
|
|
|
+ - Nodes 5,9 have no children
|
|
|
+ */
|
|
|
+
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 5, 12, 7};
|
|
|
+ size_t insert_array_size = 3;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(12 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n9, n5;
|
|
|
+ size_t n9_index, n5_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n5_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n5 = R[n5_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n9.key.share()!=9 || n5.key.share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n5.pointers.share());
|
|
|
+ zero+=(n9.pointers.share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n5.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T13 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T13 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T14) : Test 14 : LR rotation (root unmodified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 9 9 9
|
|
|
+ / \ / \ / \
|
|
|
+ 7 12 Del 8 7 12 5 12
|
|
|
+ / \ ------> / ---> / \
|
|
|
+ 3 8 5 3 7
|
|
|
+ \ /
|
|
|
+ 5 3
|
|
|
+
|
|
|
+
|
|
|
+ T6 checks:
|
|
|
+ - root is 9
|
|
|
+ - 3,5,7,12 are in correct positions
|
|
|
+ - Nodes 3,7,12 have 0 balance
|
|
|
+ - Nodes 3,7,12 have no children
|
|
|
+ - 9's bal = 1 0
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 12, 7, 3, 5};
|
|
|
+ size_t insert_array_size = 4;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(8 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n3, n7, n5, n12;
|
|
|
+ size_t n3_index, n7_index, n5_index, n12_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n5_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n12_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n5 = R[n5_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+ n3_index = getAVLLeftPtr(n5.pointers).share();
|
|
|
+ n7_index = getAVLRightPtr(n5.pointers).share();
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n3 = R[n3_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n5.key.share()!=5 || n12.key.share()!=12) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n3.key.share()!=3 || n7.key.share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n3.pointers.share());
|
|
|
+ zero+=(n7.pointers.share());
|
|
|
+ zero+=(n12.pointers.share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n5.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getLeftBal(root_node.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T14 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T14 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // (T15) : Test 15 : RL rotation (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+ 5 5 7
|
|
|
+ / \ Del 3 \ / \
|
|
|
+ 3 9 -------> 7 --> 5 9
|
|
|
+ / \
|
|
|
+ 7 9
|
|
|
+
|
|
|
+
|
|
|
+ T15 checks:
|
|
|
+ - root is 7
|
|
|
+ - 9,5,7 are in correct positions
|
|
|
+ - Nodes 5,7,9 have 0 balance
|
|
|
+ - Nodes 5,9 have no children
|
|
|
+ */
|
|
|
+
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {5, 9, 3, 7};
|
|
|
+ size_t insert_array_size = 3;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(3 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n9, n5;
|
|
|
+ size_t n9_index, n5_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=7) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n5_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n5 = R[n5_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n9.key.share()!=9 || n5.key.share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n5.pointers.share());
|
|
|
+ zero+=(n9.pointers.share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n5.pointers).share());
|
|
|
+ zero+=(getLeftBal(n5.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T15 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T15 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // (T16) : Test 16 : RL rotation (root unmodified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 5 5 5
|
|
|
+ / \ / \ / \
|
|
|
+ 3 12 Del 1 3 12 3 9
|
|
|
+ / / ------> / ---> / \
|
|
|
+ 1 7 9 7 12
|
|
|
+ \ /
|
|
|
+ 9 7
|
|
|
+
|
|
|
+
|
|
|
+ T8 checks:
|
|
|
+ - root is 5
|
|
|
+ - 3,9,7,12 are in correct positions
|
|
|
+ - Nodes 3,7,12 have 0 balance
|
|
|
+ - Nodes 3,7,12 have no children
|
|
|
+ - 5's bal = 0 1
|
|
|
+
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {5, 3, 12, 7, 1, 9};
|
|
|
+ size_t insert_array_size = 5;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(1 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n3, n7, n9, n12;
|
|
|
+ size_t n3_index, n7_index, n9_index, n12_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n3_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n3 = R[n3_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+ n7_index = getAVLLeftPtr(n9.pointers).share();
|
|
|
+ n12_index = getAVLRightPtr(n9.pointers).share();
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n3.key.share()!=3 || n9.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n7.key.share()!=7 || n12.key.share()!=12) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n3.pointers.share());
|
|
|
+ zero+=(n7.pointers.share());
|
|
|
+ zero+=(n12.pointers.share());
|
|
|
+ zero+=(getLeftBal(root_node.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getRightBal(root_node.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T16 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T16 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // (T17) : Test 17 : Double imbalance (root modified)
|
|
|
+ /*
|
|
|
+ Operation:
|
|
|
+
|
|
|
+ 9 9
|
|
|
+ / \ / \
|
|
|
+ 5 12 Del 10 5 15
|
|
|
+ / \ / \ --------> / \ / \
|
|
|
+ 3 7 10 15 3 7 12 20
|
|
|
+ / \ / \ \ / \ / \
|
|
|
+ 2 4 6 8 20 2 4 6 8
|
|
|
+ / /
|
|
|
+ 1 1
|
|
|
+
|
|
|
+
|
|
|
+ 5
|
|
|
+ / \
|
|
|
+ 3 9
|
|
|
+ -----> / \ / \
|
|
|
+ 2 4 7 15
|
|
|
+ / / \ / \
|
|
|
+ 1 6 8 10 20
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ T17 checks:
|
|
|
+ - root is 5
|
|
|
+ - all other nodes are in correct positions
|
|
|
+ - balances and children are correct
|
|
|
+ */
|
|
|
+ {
|
|
|
+ AVL tree(tio.player(), size);
|
|
|
+ bool success = 1;
|
|
|
+ int insert_array[] = {9, 5, 12, 7, 3, 10, 15, 2, 4, 6, 8, 20, 1};
|
|
|
+ size_t insert_array_size = 12;
|
|
|
+ Node node;
|
|
|
+ for(size_t i = 0; i<=insert_array_size; i++) {
|
|
|
+ newnode(node);
|
|
|
+ node.key.set(insert_array[i] * tio.player());
|
|
|
+ tree.insert(tio, yield, node);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+ }
|
|
|
+
|
|
|
+ RegAS del_key;
|
|
|
+ del_key.set(10 * tio.player());
|
|
|
+ tree.del(tio, yield, del_key);
|
|
|
+ tree.check_avl(tio, yield);
|
|
|
+
|
|
|
+ Duoram<Node>* oram = tree.get_oram();
|
|
|
+ RegXS root_xs = tree.get_root();
|
|
|
+ size_t root = reconstruct_RegXS(tio, yield, root_xs);
|
|
|
+ auto A = oram->flat(tio, yield);
|
|
|
+ auto R = A.reconstruct();
|
|
|
+ Node root_node, n3, n7, n9;
|
|
|
+ Node n1, n2, n4, n6, n8, n12, n15, n20;
|
|
|
+ size_t n3_index, n7_index, n9_index;
|
|
|
+ size_t n1_index, n2_index, n4_index, n6_index;
|
|
|
+ size_t n8_index, n12_index, n15_index, n20_index;
|
|
|
+ root_node = R[root];
|
|
|
+ if((root_node.key).share()!=5) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ n3_index = (getAVLLeftPtr(root_node.pointers)).share();
|
|
|
+ n9_index = (getAVLRightPtr(root_node.pointers)).share();
|
|
|
+ n3 = R[n3_index];
|
|
|
+ n9 = R[n9_index];
|
|
|
+
|
|
|
+ n2_index = getAVLLeftPtr(n3.pointers).share();
|
|
|
+ n4_index = getAVLRightPtr(n3.pointers).share();
|
|
|
+ n7_index = getAVLLeftPtr(n9.pointers).share();
|
|
|
+ n15_index = getAVLRightPtr(n9.pointers).share();
|
|
|
+ n2 = R[n2_index];
|
|
|
+ n4 = R[n4_index];
|
|
|
+ n7 = R[n7_index];
|
|
|
+ n15 = R[n15_index];
|
|
|
+
|
|
|
+ n1_index = getAVLLeftPtr(n2.pointers).share();
|
|
|
+ n6_index = getAVLLeftPtr(n7.pointers).share();
|
|
|
+ n8_index = getAVLRightPtr(n7.pointers).share();
|
|
|
+ n12_index = getAVLLeftPtr(n15.pointers).share();
|
|
|
+ n20_index = getAVLRightPtr(n15.pointers).share();
|
|
|
+ n1 = R[n1_index];
|
|
|
+ n6 = R[n6_index];
|
|
|
+ n8 = R[n8_index];
|
|
|
+ n12 = R[n12_index];
|
|
|
+ n20 = R[n20_index];
|
|
|
+
|
|
|
+ // Node value checks
|
|
|
+ if(n3.key.share()!=3 || n9.key.share()!=9) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n2.key.share()!=2 || n4.key.share()!=4) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n7.key.share()!=7 || n15.key.share()!=15) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n1.key.share()!=1 || n6.key.share()!=6 || n8.key.share()!=8) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(n12.key.share()!=12 || n20.key.share()!=20) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Node balance checks
|
|
|
+ size_t zero = 0;
|
|
|
+ zero+=(n1.pointers.share());
|
|
|
+ zero+=(n4.pointers.share());
|
|
|
+ zero+=(n6.pointers.share());
|
|
|
+ zero+=(n8.pointers.share());
|
|
|
+ zero+=(n12.pointers.share());
|
|
|
+ zero+=(n20.pointers.share());
|
|
|
+ zero+=(getLeftBal(n7.pointers).share());
|
|
|
+ zero+=(getRightBal(n7.pointers).share());
|
|
|
+ zero+=(getLeftBal(n9.pointers).share());
|
|
|
+ zero+=(getRightBal(n9.pointers).share());
|
|
|
+ zero+=(getLeftBal(n15.pointers).share());
|
|
|
+ zero+=(getRightBal(n15.pointers).share());
|
|
|
+ zero+=(getRightBal(n3.pointers).share());
|
|
|
+ zero+=(getLeftBal(root_node.pointers).share());
|
|
|
+ zero+=(getRightBal(root_node.pointers).share());
|
|
|
+ if(zero!=0) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ int one = (getLeftBal(n3.pointers).share());
|
|
|
+ if(one!=1) {
|
|
|
+ success = false;
|
|
|
+ }
|
|
|
+ if(player0) {
|
|
|
+ if(success) {
|
|
|
+ print_green("T17 : SUCCESS\n");
|
|
|
+ } else {
|
|
|
+ print_red("T17 : FAIL\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ });
|
|
|
+}
|